Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
LDA.cxx
Go to the documentation of this file.
1// $Id$
2/**********************************************************************************
3 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
4 * Package: TMVA *
5 * Class : LDA *
6 * Web : http://tmva.sourceforge.net *
7 * *
8 * Description: *
9 * Local LDA method used by MethodKNN to compute MVA value. *
10 * This is experimental code under development. This class computes *
11 * parameters of signal and background PDFs using Gaussian approximation. *
12 * *
13 * Author: *
14 * John Alison John.Alison@cern.ch - University of Pennsylvania, USA *
15 * *
16 * Copyright (c) 2007: *
17 * CERN, Switzerland *
18 * MPI-K Heidelberg, Germany *
19 * University of Pennsylvania, USA *
20 * *
21 * Redistribution and use in source and binary forms, with or without *
22 * modification, are permitted according to the terms listed in LICENSE *
23 * (http://tmva.sourceforge.net/LICENSE) *
24 **********************************************************************************/
25
26/*! \class TMVA::LDA
27\ingroup TMVA
28
29*/
30
31// Local
32#include "TMVA/LDA.h"
33
34// C/C++
35#include "TDecompSVD.h"
36#include "TMatrixF.h"
37#include "TMath.h"
38
39#include "TMVA/Types.h"
40#include "TMVA/MsgLogger.h"
41
42/////////////////////////////////////////////////////////////////////////////////
43/// constructor
44
45TMVA::LDA::LDA( Float_t tolerence, Bool_t debug )
46 : fTolerence(tolerence),
47 fNumParams(0),
48 fSigma(0),
49 fSigmaInverse(0),
50 fDebug(debug),
51 fLogger( new MsgLogger("LDA", (debug?kINFO:kDEBUG)) )
52{
53}
54
55////////////////////////////////////////////////////////////////////////////////
56/// destructor
57
59{
60 delete fLogger;
61}
62
63////////////////////////////////////////////////////////////////////////////////
64/// Create LDA matrix using local events found by knn method
65
66void TMVA::LDA::Initialize(const LDAEvents& inputSignalEvents, const LDAEvents& inputBackgroundEvents)
67{
68 Log() << kDEBUG << "There are: " << inputSignalEvents.size() << " input signal events " << Endl;
69 Log() << kDEBUG << "There are: " << inputBackgroundEvents.size() << " input background events " << Endl;
70
71 fNumParams = inputSignalEvents[0].size();
72
73 UInt_t numSignalEvents = inputSignalEvents.size();
74 UInt_t numBackEvents = inputBackgroundEvents.size();
75 UInt_t numTotalEvents = numSignalEvents + numBackEvents;
76 fEventFraction[0] = (Float_t)numBackEvents/numTotalEvents;
77 fEventFraction[1] = (Float_t)numSignalEvents/numTotalEvents;
78 UInt_t K = 2;
79
80 // get the mean of the signal and background for each parameter
81 std::vector<Float_t> m_muSignal (fNumParams,0.0);
82 std::vector<Float_t> m_muBackground (fNumParams,0.0);
83 for (UInt_t param=0; param < fNumParams; ++param) {
84 for (UInt_t eventNumber=0; eventNumber < numSignalEvents; ++eventNumber)
85 m_muSignal[param] += inputSignalEvents[eventNumber][param];
86 for (UInt_t eventNumber=0; eventNumber < numBackEvents; ++eventNumber)
87 m_muBackground[param] += inputBackgroundEvents[eventNumber][param]/numBackEvents;
88 if (numSignalEvents > 0) m_muSignal[param] /= numSignalEvents;
89 if (numBackEvents > 0 ) m_muBackground[param] /= numBackEvents;
90 }
91 fMu[0] = m_muBackground;
92 fMu[1] = m_muSignal;
93
94 if (fDebug) {
95 Log() << kDEBUG << "the signal means" << Endl;
96 for (UInt_t param=0; param < fNumParams; ++param)
97 Log() << kDEBUG << m_muSignal[param] << Endl;
98 Log() << kDEBUG << "the background means" << Endl;
99 for (UInt_t param=0; param < inputBackgroundEvents[0].size(); ++param)
100 Log() << kDEBUG << m_muBackground[param] << Endl;
101 }
102
103 // sigma is a sum of two symmetric matrices, one for the background and one for signal
104 // get the matrices separately (def not be the best way to do it!)
105
106 // the signal, background, and total matrix
107 TMatrixF sigmaSignal(fNumParams, fNumParams);
108 TMatrixF sigmaBack(fNumParams, fNumParams);
109 if (fSigma!=0) delete fSigma;
110 fSigma = new TMatrixF(fNumParams, fNumParams);
111 for (UInt_t row=0; row < fNumParams; ++row) {
112 for (UInt_t col=0; col < fNumParams; ++col) {
113 sigmaSignal[row][col] = 0;
114 sigmaBack[row][col] = 0;
115 (*fSigma)[row][col] = 0;
116 }
117 }
118
119 for (UInt_t eventNumber=0; eventNumber < numSignalEvents; ++eventNumber) {
120 for (UInt_t row=0; row < fNumParams; ++row) {
121 for (UInt_t col=0; col < fNumParams; ++col) {
122 sigmaSignal[row][col] += (inputSignalEvents[eventNumber][row] - m_muSignal[row]) * (inputSignalEvents[eventNumber][col] - m_muSignal[col] );
123 }
124 }
125 }
126
127 for (UInt_t eventNumber=0; eventNumber < numBackEvents; ++eventNumber) {
128 for (UInt_t row=0; row < fNumParams; ++row) {
129 for (UInt_t col=0; col < fNumParams; ++col) {
130 sigmaBack[row][col] += (inputBackgroundEvents[eventNumber][row] - m_muBackground[row]) * (inputBackgroundEvents[eventNumber][col] - m_muBackground[col] );
131 }
132 }
133 }
134
135 // the total matrix
136 *fSigma = sigmaBack + sigmaSignal;
137 *fSigma *= 1.0/(numTotalEvents - K);
138
139 if (fDebug) {
140 Log() << "after filling sigmaSignal" <<Endl;
141 sigmaSignal.Print();
142 Log() << "after filling sigmaBack" <<Endl;
143 sigmaBack.Print();
144 Log() << "after filling total Sigma" <<Endl;
145 fSigma->Print();
146 }
147
148 TDecompSVD solutionSVD = TDecompSVD( *fSigma );
149 TMatrixF decomposed = TMatrixF( fNumParams, fNumParams );
150 TMatrixF diag ( fNumParams, fNumParams );
151 TMatrixF uTrans( fNumParams, fNumParams );
152 TMatrixF vTrans( fNumParams, fNumParams );
153 if (solutionSVD.Decompose()) {
154 for (UInt_t i = 0; i< fNumParams; ++i) {
155 if (solutionSVD.GetSig()[i] > fTolerence)
156 diag(i,i) = solutionSVD.GetSig()[i];
157 else
158 diag(i,i) = fTolerence;
159 }
160
161 if (fDebug) {
162 Log() << "the diagonal" <<Endl;
163 diag.Print();
164 }
165
166 decomposed = solutionSVD.GetV();
167 decomposed *= diag;
168 decomposed *= solutionSVD.GetU();
169
170 if (fDebug) {
171 Log() << "the decomposition " <<Endl;
172 decomposed.Print();
173 }
174
175 *fSigmaInverse = uTrans.Transpose(solutionSVD.GetU());
176 *fSigmaInverse /= diag;
177 *fSigmaInverse *= vTrans.Transpose(solutionSVD.GetV());
178
179 if (fDebug) {
180 Log() << "the SigmaInverse " <<Endl;
181 fSigmaInverse->Print();
182
183 Log() << "the real " <<Endl;
184 fSigma->Invert();
185 fSigma->Print();
186
187 Bool_t problem = false;
188 for (UInt_t i =0; i< fNumParams; ++i) {
189 for (UInt_t j =0; j< fNumParams; ++j) {
190 if (TMath::Abs((Float_t)(*fSigma)(i,j) - (Float_t)(*fSigmaInverse)(i,j)) > 0.01) {
191 Log() << "problem, i= "<< i << " j= " << j << Endl;
192 Log() << "Sigma(i,j)= "<< (*fSigma)(i,j) << " SigmaInverse(i,j)= " << (*fSigmaInverse)(i,j) <<Endl;
193 Log() << "The difference is : " << TMath::Abs((Float_t)(*fSigma)(i,j) - (Float_t)(*fSigmaInverse)(i,j)) <<Endl;
194 problem = true;
195 }
196 }
197 }
198 if (problem) Log() << kWARNING << "Problem with the inversion!" << Endl;
199
200 }
201 }
202}
203
204////////////////////////////////////////////////////////////////////////////////
205///
206/// Probability value using Gaussian approximation
207///
208
209Float_t TMVA::LDA::FSub(const std::vector<Float_t>& x, Int_t k)
210{
211 Float_t prefactor = 1.0/(TMath::TwoPi()*TMath::Sqrt(fSigma->Determinant()));
212 std::vector<Float_t> m_transPoseTimesSigmaInverse;
213
214 for (UInt_t j=0; j < fNumParams; ++j) {
215 Float_t m_temp = 0;
216 for (UInt_t i=0; i < fNumParams; ++i) {
217 m_temp += (x[i] - fMu[k][i]) * (*fSigmaInverse)(j,i);
218 }
219 m_transPoseTimesSigmaInverse.push_back(m_temp);
220 }
221
222 Float_t exponent = 0.0;
223 for (UInt_t i=0; i< fNumParams; ++i) {
224 exponent += m_transPoseTimesSigmaInverse[i]*(x[i] - fMu[k][i]);
225 }
226
227 exponent *= -0.5;
228
229 return prefactor*TMath::Exp( exponent );
230}
231
232////////////////////////////////////////////////////////////////////////////////
233///
234/// Signal probability with Gaussian approximation
235///
236
237Float_t TMVA::LDA::GetProb(const std::vector<Float_t>& x, Int_t k)
238{
239 Float_t m_numerator = FSub(x,k)*fEventFraction[k];
240 Float_t m_denominator = FSub(x,0)*fEventFraction[0]+FSub(x,1)*fEventFraction[1];
241
242 return m_numerator/m_denominator;
243}
244
245////////////////////////////////////////////////////////////////////////////////
246///
247/// Log likelihood function with Gaussian approximation
248///
249
250Float_t TMVA::LDA::GetLogLikelihood( const std::vector<Float_t>& x, Int_t k )
251{
252 return TMath::Log( FSub(x,k)/FSub(x,!k) ) + TMath::Log( fEventFraction[k]/fEventFraction[!k] );
253}
std::vector< std::vector< Float_t > > LDAEvents
Definition LDA.h:38
float Float_t
Definition RtypesCore.h:57
TMatrixT< Float_t > TMatrixF
Definition TMatrixFfwd.h:23
Single Value Decomposition class.
Definition TDecompSVD.h:24
const TVectorD & GetSig()
Definition TDecompSVD.h:59
const TMatrixD & GetV()
Definition TDecompSVD.h:57
Bool_t Decompose() override
SVD decomposition of matrix If the decomposition succeeds, bit kDecomposed is set ,...
const TMatrixD & GetU()
Definition TDecompSVD.h:55
LDA(Float_t tolerence=1.0e-5, Bool_t debug=false)
constructor
Definition LDA.cxx:45
void Initialize(const LDAEvents &inputSignal, const LDAEvents &inputBackground)
Create LDA matrix using local events found by knn method.
Definition LDA.cxx:66
Float_t GetLogLikelihood(const std::vector< Float_t > &x, Int_t k)
Log likelihood function with Gaussian approximation.
Definition LDA.cxx:250
~LDA()
destructor
Definition LDA.cxx:58
Float_t GetProb(const std::vector< Float_t > &x, Int_t k)
Signal probability with Gaussian approximation.
Definition LDA.cxx:237
Float_t FSub(const std::vector< Float_t > &x, Int_t k)
Probability value using Gaussian approximation.
Definition LDA.cxx:209
ostringstream derivative to redirect and format output
Definition MsgLogger.h:57
void Print(Option_t *name="") const override
Print the matrix as a table of elements.
TMatrixT.
Definition TMatrixT.h:39
TMatrixT< Element > & Transpose(const TMatrixT< Element > &source)
Transpose matrix source.
virtual void Print(Option_t *option="") const
This method must be overridden when a class wants to print itself.
Definition TObject.cxx:636
Double_t x[n]
Definition legend1.C:17
MsgLogger & Endl(MsgLogger &ml)
Definition MsgLogger.h:148
Double_t Exp(Double_t x)
Returns the base-e exponential function of x, which is e raised to the power x.
Definition TMath.h:709
Double_t Log(Double_t x)
Returns the natural logarithm of x.
Definition TMath.h:756
Double_t Sqrt(Double_t x)
Returns the square root of x.
Definition TMath.h:662
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
Definition TMathBase.h:123
constexpr Double_t TwoPi()
Definition TMath.h:44