Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
HypoTestInverterPlot.cxx
Go to the documentation of this file.
1// @(#)root/roostats:$Id$
2// Author: Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke
3/*************************************************************************
4 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
5 * All rights reserved. *
6 * *
7 * For the licensing terms see $ROOTSYS/LICENSE. *
8 * For the list of contributors see $ROOTSYS/README/CREDITS. *
9 *************************************************************************/
10
11/** \class RooStats::HypoTestInverterPlot
12 \ingroup Roostats
13
14Class to plot a HypoTestInverterResult, the output of the HypoTestInverter calculator.
15
16It can be used to plot the obtained p-values ( CLb, CLs+b or CLs) for each scanned point, as well as
17the test statistic distributions (when a calculator based on pseudo-experiments is used) for the two
18hypotheses.
19
20*/
21
22// include header file of this class
24
25// include other header files
30
31#include "TGraphErrors.h"
32#include "TGraphAsymmErrors.h"
33#include "TMultiGraph.h"
34#include "TROOT.h"
35#include "TLine.h"
36#include "TAxis.h"
37#include "TLegend.h"
38#include "TVirtualPad.h"
39#include "TError.h"
41
42#include <cmath>
43
44using namespace std;
45
47
48using namespace RooStats;
49
50////////////////////////////////////////////////////////////////////////////////
51/// constructor from a HypoTestInverterResult class
52/// name and title are taken from the result class
53
55 TNamed( results->GetName(), results->GetTitle() ),
56 fResults(results)
57{
58}
59
60////////////////////////////////////////////////////////////////////////////////
61/// constructor with name and title from a HypoTestInverterResult class
62
64 const char* title,
65 HypoTestInverterResult* results ) :
66 TNamed( TString(name), TString(title) ),
67 fResults(results)
68{
69}
70
71////////////////////////////////////////////////////////////////////////////////
72/// Make the plot of the result of the scan using the observed data.
73/// By default plot CLs or CLsb depending if the flag UseCLs is set for the results
74/// that are passed to this instance.
75///
76/// \param opt Options according to following list:
77/// - Empty: Return CLs or CLs+b depending on the value of UseCLs.ƒ
78/// - "CLB": return CLb plot
79/// - "CLS+B" / "CLSPLUSB": return CLs+b plot independently of the flag
80/// - "CLS": return CLs plot independently of the flag
81
83{
84 TString option(opt);
85 option.ToUpper();
86 enum Mode_t { Default, CLb, CLsPlusb, CLs };
87 Mode_t type = Default;
88 if (option.Contains("CLB")) type = CLb;
89 else if (option.Contains("CLS+B") || option.Contains("CLSPLUSB")) type = CLsPlusb;
90 else if (option.Contains("CLS" )) type = CLs;
91
92 const int nEntries = fResults->ArraySize();
93
94 // sort the arrays based on the x values
95 std::vector<unsigned int> index(nEntries);
96 TMath::SortItr(fResults->fXValues.begin(), fResults->fXValues.end(), index.begin(), false);
97
98 // copy result in sorted arrays
99 std::vector<double> xArray;
100 std::vector<double> yArray;
101 std::vector<double> yErrArray;
102
103 for (int i=0; i<nEntries; i++) {
104 double CLVal = 0., CLErr = 0.;
105 if (type == Default) {
106 CLVal = fResults->GetYValue(index[i]);
107 CLErr = fResults->GetYError(index[i]);
108 } else if (type == CLb) {
109 CLVal = fResults->CLb(index[i]);
110 CLErr = fResults->CLbError(index[i]);
111 } else if (type == CLsPlusb) {
112 CLVal = fResults->CLsplusb(index[i]);
113 CLErr = fResults->CLsplusbError(index[i]);
114 } else if (type == CLs) {
115 CLVal = fResults->CLs(index[i]);
116 CLErr = fResults->CLsError(index[i]);
117 }
118
119 if (CLVal < 0. || !std::isfinite(CLVal)) {
120 Warning("HypoTestInverterPlot::MakePlot", "Got a confidence level of %f at x=%f (failed fit?). Skipping this point.", CLVal, fResults->GetXValue(index[i]));
121 continue;
122 }
123
124 yArray.push_back(CLVal);
125 yErrArray.push_back(CLErr);
126 xArray.push_back(fResults->GetXValue(index[i]));
127 }
128
129 TGraphErrors* graph = new TGraphErrors(static_cast<Int_t>(xArray.size()),&xArray.front(),&yArray.front(),nullptr,&yErrArray.front());
130 TString pValueName = "CLs";
131 if (type == CLb ) pValueName = "CLb";
132 if (type == CLsPlusb || (type == Default && !fResults->fUseCLs) ) pValueName = "CLs+b";
133 TString name = pValueName + TString("_observed");
134 TString title = TString("Observed ") + pValueName;
135 graph->SetName(name);
136 graph->SetTitle(title);
137 graph->SetMarkerStyle(20);
138 graph->SetLineWidth(2);
139 return graph;
140}
141
142////////////////////////////////////////////////////////////////////////////////
143/// Make the expected plot and the bands
144/// nsig1 and nsig2 indicates the n-sigma value for the bands
145/// if nsig1 = 0 no band is drawn (only expected value)
146/// if nsig2 > nsig1 (default is nsig1=1 and nsig2=2) the second band is also drawn
147/// The first band is drawn in green while the second in yellow
148/// THe return result is a TMultiGraph object
149
151{
152 const int nEntries = fResults->ArraySize();
153 bool doFirstBand = (nsig1 > 0);
154 bool doSecondBand = (nsig2 > nsig1);
155
156 nsig1 = std::abs(nsig1);
157 nsig2 = std::abs(nsig2);
158
159 // sort the arrays based on the x values
160 std::vector<unsigned int> index(nEntries);
161 TMath::SortItr(fResults->fXValues.begin(), fResults->fXValues.end(), index.begin(), false);
162
163 // create the graphs
164 TGraph * g0 = new TGraph;
165 TString pValueName = "CLs";
166 if (!fResults->fUseCLs) pValueName = "CLs+b";
167 g0->SetTitle(TString::Format("Expected %s - Median",pValueName.Data()) );
168 TGraphAsymmErrors * g1 = nullptr;
169 TGraphAsymmErrors * g2 = nullptr;
170 if (doFirstBand) {
171 g1 = new TGraphAsymmErrors;
172 if (nsig1 - int(nsig1) < 0.01)
173 g1->SetTitle(TString::Format("Expected %s #pm %d #sigma",pValueName.Data(),int(nsig1)) );
174 else
175 g1->SetTitle(TString::Format("Expected %s #pm %3.1f #sigma",pValueName.Data(),nsig1) );
176 }
177 if (doSecondBand) {
178 g2 = new TGraphAsymmErrors;
179 if (nsig2 - int(nsig2) < 0.01)
180 g2->SetTitle(TString::Format("Expected %s #pm %d #sigma",pValueName.Data(),int(nsig2)) );
181 else
182 g2->SetTitle(TString::Format("Expected %s #pm %3.1f #sigma",pValueName.Data(),nsig2) );
183 }
184 double p[7];
185 double q[7];
186 p[0] = ROOT::Math::normal_cdf(-nsig2);
187 p[1] = ROOT::Math::normal_cdf(-nsig1);
188 p[2] = 0.5;
189 p[3] = ROOT::Math::normal_cdf(nsig1);
190 p[4] = ROOT::Math::normal_cdf(nsig2);
191
192 bool resultIsAsymptotic = ( !fResults->GetNullTestStatDist(0) && !fResults->GetAltTestStatDist(0) );
193 int np = 0;
194 for (int j=0; j<nEntries; ++j) {
195 int i = index[j]; // i is the order index
197 if ( !s) continue;
198 const std::vector<double> & values = s->GetSamplingDistribution();
199 // special case for asymptotic results (cannot use TMath::quantile in that case)
200 if (resultIsAsymptotic) {
201 double maxSigma = fResults->fgAsymptoticMaxSigma;
202 double dsig = 2* maxSigma/ (values.size() -1) ;
203 int i0 = (int) TMath::Floor ( ( -nsig2 + maxSigma )/dsig + 0.5);
204 int i1 = (int) TMath::Floor ( (-nsig1 + maxSigma )/dsig + 0.5);
205 int i2 = (int) TMath::Floor ( ( maxSigma)/dsig + 0.5);
206 int i3 = (int) TMath::Floor ( ( nsig1 + maxSigma)/dsig + 0.5);
207 int i4 = (int) TMath::Floor ( ( nsig2 + maxSigma)/dsig + 0.5);
208 q[0] = values[i0];
209 q[1] = values[i1];
210 q[2] = values[i2];
211 q[3] = values[i3];
212 q[4] = values[i4];
213 }
214 else {
215 double * x = const_cast<double *>(&values[0]); // need to change TMath::Quantiles
216 TMath::Quantiles(values.size(), 5, x,q,p,false);
217 }
218
219 g0->SetPoint(np, fResults->GetXValue(i), q[2]);
220 if (g1) {
221 g1->SetPoint(np, fResults->GetXValue(i), q[2]);
222 g1->SetPointEYlow(np, q[2] - q[1]); // -1 sigma error
223 g1->SetPointEYhigh(np, q[3] - q[2]);//+1 sigma error
224 }
225 if (g2) {
226 g2->SetPoint(np, fResults->GetXValue(i), q[2]);
227
228 g2->SetPointEYlow(np, q[2]-q[0]); // -2 -- -1 sigma error
229 g2->SetPointEYhigh(np, q[4]-q[2]);
230 }
231 if (s) delete s;
232 np++;
233 }
234
235 TString name = GetName() + TString("_expected");
236 TString title = TString("Expected ") + GetTitle();
237 TMultiGraph* graph = new TMultiGraph(name,title);
238
239 // set the graphics options and add in multi graph
240 // orderof adding is drawing order
241 if (g2) {
243 graph->Add(g2,"3");
244 }
245 if (g1) {
246 g1->SetFillColor(kGreen);
247 graph->Add(g1,"3");
248 }
249 g0->SetLineStyle(2);
250 g0->SetLineWidth(2);
251 graph->Add(g0,"L");
252
253 return graph;
254}
255
256////////////////////////////////////////////////////////////////////////////////
257/// destructor
258
260{
261}
262
263////////////////////////////////////////////////////////////////////////////////
264/// Draw the result in the current canvas
265/// Possible options:
266/// - SAME : draw in the current axis
267/// - OBS : draw only the observed plot
268/// - EXP : draw only the expected plot
269///
270/// - CLB : draw also the CLB
271/// - 2CL : draw both clsplusb and cls
272///
273/// default draw observed + expected with 1 and 2 sigma bands
274
276
277 TString option(opt);
278 option.ToUpper();
279 bool drawAxis = !option.Contains("SAME");
280 bool drawObs = option.Contains("OBS") || !option.Contains("EXP");
281 bool drawExp = option.Contains("EXP") || !option.Contains("OBS");
282 bool drawCLb = option.Contains("CLB");
283 bool draw2CL = option.Contains("2CL");
284
285 TGraphErrors * gobs = nullptr;
286 TGraph * gplot = nullptr;
287 if (drawObs) {
288 gobs = MakePlot();
289 // add object to top-level directory to avoid mem leak
290 if (gROOT) gROOT->Add(gobs);
291 if (drawAxis) {
292 gobs->Draw("APL");
293 gplot = gobs;
294 gplot->GetHistogram()->SetTitle( GetTitle() );
295 }
296 else gobs->Draw("PL");
297
298 }
299 TMultiGraph * gexp = nullptr;
300 if (drawExp) {
301 gexp = MakeExpectedPlot();
302 // add object to current directory to avoid mem leak
303 if (gROOT) gROOT->Add(gexp);
304 if (drawAxis && !drawObs) {
305 gexp->Draw("A");
306 if (gexp->GetHistogram()) gexp->GetHistogram()->SetTitle( GetTitle() );
307 gplot = (TGraph*) gexp->GetListOfGraphs()->First();
308 }
309 else
310 gexp->Draw();
311
312 }
313
314 // draw also an horizontal line at the desired conf level
315 if (gplot) {
316 double alpha = 1.-fResults->ConfidenceLevel();
317 double x1 = gplot->GetXaxis()->GetXmin();
318 double x2 = gplot->GetXaxis()->GetXmax();
319 TLine * line = new TLine(x1, alpha, x2,alpha);
321 line->Draw();
322 // put axis labels
324 if (arg) gplot->GetXaxis()->SetTitle(arg->GetName());
325 gplot->GetYaxis()->SetTitle("p value");
326 }
327
328
329 TGraph *gclb = nullptr;
330 if (drawCLb) {
331 gclb = MakePlot("CLb");
332 if (gROOT) gROOT->Add(gclb);
333 gclb->SetMarkerColor(kBlue+4);
334 gclb->Draw("PL");
335 // draw in red observed cls or clsb
336 if (gobs) gobs->SetMarkerColor(kRed);
337 }
338 TGraph * gclsb = nullptr;
339 TGraph * gcls = nullptr;
340 if (draw2CL) {
341 if (fResults->fUseCLs) {
342 gclsb = MakePlot("CLs+b");
343 if (gROOT) gROOT->Add(gclsb);
344 gclsb->SetMarkerColor(kBlue);
345 gclsb->Draw("PL");
346 gclsb->SetLineStyle(3);
347 }
348 else {
349 gcls = MakePlot("CLs");
350 if (gROOT) gROOT->Add(gcls);
351 gcls->SetMarkerColor(kBlue);
352 gcls->Draw("PL");
353 gcls->SetLineStyle(3);
354 }
355 }
356 // draw again observed values otherwise will be covered by the bands
357 if (gobs) {
358 gobs->Draw("PL");
359 }
360
361
362 double y0 = 0.6;
363 double verticalSize = (gexp || draw2CL || drawCLb ) ? 0.3 : 0.15;
364 double y1 = y0 + verticalSize;
365 TLegend * l = new TLegend(0.6,y0,0.9,y1);
366 if (gobs) l->AddEntry(gobs,"","PEL");
367 if (gclsb) l->AddEntry(gclsb,"","PEL");
368 if (gcls) l->AddEntry(gcls,"","PEL");
369 if (gclb) l->AddEntry(gclb,"","PEL");
370 if (gexp) {
371 // loop in reverse order (opposite to drawing one)
372 int ngraphs = gexp->GetListOfGraphs()->GetSize();
373 for (int i = ngraphs-1; i>=0; --i) {
374 TObject * obj = gexp->GetListOfGraphs()->At(i);
375 TString lopt = "F";
376 if (i == ngraphs-1) lopt = "L";
377 if (obj) l->AddEntry(obj,"",lopt);
378 }
379 }
380 l->Draw();
381 // redraw the axis
382 if (gPad) gPad->RedrawAxis();
383
384}
385
386////////////////////////////////////////////////////////////////////////////////
387/// \param index Index of the result stored in HypoTestInverterResult
388/// \param type Type of the test (see below)
389/// \param nbins Number of bins
390/// - type =0 null and alt
391/// - type = 1 only null (S+B)
392/// - type = 2 only alt (B)
393
395 SamplingDistPlot * pl = nullptr;
396 if (type == 0) {
398 if (result)
399 pl = new HypoTestPlot(*result, nbins );
400 return pl;
401 }
402 if (type == 1) {
404 if (sbDist) {
405 pl = new SamplingDistPlot( nbins);
406 pl->AddSamplingDistribution(sbDist);
407 return pl;
408 }
409 }
410 if (type == 2) {
412 if (bDist) {
413 pl = new SamplingDistPlot( nbins);
414 pl->AddSamplingDistribution(bDist);
415 return pl;
416 }
417 }
418 return nullptr;
419}
const char Option_t
Definition RtypesCore.h:66
#define ClassImp(name)
Definition Rtypes.h:377
@ kRed
Definition Rtypes.h:66
@ kGreen
Definition Rtypes.h:66
@ kBlue
Definition Rtypes.h:66
@ kYellow
Definition Rtypes.h:66
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t option
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char x2
Option_t Option_t TPoint TPoint const char x1
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Option_t Option_t TPoint TPoint const char y1
char name[80]
Definition TGX11.cxx:110
float * q
#define gROOT
Definition TROOT.h:407
#define gPad
Common abstract base class for objects that represent a value and a "shape" in RooFit.
Definition RooAbsArg.h:79
RooAbsArg * first() const
Class to plot a HypoTestInverterResult, the output of the HypoTestInverter calculator.
HypoTestInverterResult * fResults
void Draw(Option_t *opt="") override
Draw the scan result in the current canvas Possible options: "" (default): draw observed + expected w...
SamplingDistPlot * MakeTestStatPlot(int index, int type=0, int nbins=100)
Plot the test statistic distributions.
HypoTestInverterPlot(HypoTestInverterResult *results)
constructor
TMultiGraph * MakeExpectedPlot(double sig1=1, double sig2=2)
Make the expected plot and the bands nsig1 and nsig2 indicates the n-sigma value for the bands if nsi...
TGraphErrors * MakePlot(Option_t *opt="")
return a TGraphErrors with the obtained observed p-values resultinf from the scan By default (Option ...
HypoTestInverterResult class holds the array of hypothesis test results and compute a confidence inte...
double GetYValue(int index) const
function to return the value of the confidence level for the i^th entry in the results
SamplingDistribution * GetSignalAndBackgroundTestStatDist(int index) const
get the signal and background test statistic distribution
int ArraySize() const
number of entries in the results array
double CLsplusbError(int index) const
return the observed CLsplusb value for the i-th entry
double CLsError(int index) const
return the observed CLb value for the i-th entry
double CLbError(int index) const
return the observed CLb value for the i-th entry
double GetXValue(int index) const
function to return the value of the parameter of interest for the i^th entry in the results
static double fgAsymptoticMaxSigma
max sigma value used to scan asymptotic expected p values
double CLs(int index) const
return the observed CLb value for the i-th entry
double GetYError(int index) const
function to return the estimated error on the value of the confidence level for the i^th entry in the...
double CLb(int index) const
return the observed CLb value for the i-th entry
TList fYObjects
list of HypoTestResult for each point
SamplingDistribution * GetExpectedPValueDist(int index) const
return expected distribution of p-values (Cls or Clsplusb)
double CLsplusb(int index) const
return the observed CLsplusb value for the i-th entry
SamplingDistribution * GetNullTestStatDist(int index) const
same in terms of alt and null
SamplingDistribution * GetAltTestStatDist(int index) const
SamplingDistribution * GetBackgroundTestStatDist(int index) const
get the background test statistic distribution
This class provides the plots for the result of a study performed with any of the HypoTestCalculatorG...
HypoTestResult is a base class for results from hypothesis tests.
This class provides simple and straightforward utilities to plot SamplingDistribution objects.
double AddSamplingDistribution(const SamplingDistribution *samplingDist, Option_t *drawOptions="NORMALIZE HIST")
adds the sampling distribution and returns the scale factor
This class simply holds a sampling distribution of some test statistic.
const std::vector< double > & GetSamplingDistribution() const
Get test statistics values.
RooArgSet fParameters
set containing the parameter of interest
double ConfidenceLevel() const override
return the confidence interval
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
Definition TAttFill.h:37
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
Definition TAttLine.h:42
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
Definition TAttLine.h:43
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition TAttLine.h:40
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Definition TAttMarker.h:38
Double_t GetXmax() const
Definition TAxis.h:140
Double_t GetXmin() const
Definition TAxis.h:139
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
TGraph with asymmetric error bars.
virtual void SetPointEYlow(Int_t i, Double_t eyl)
Set EYlow for point i.
virtual void SetPointEYhigh(Int_t i, Double_t eyh)
Set EYhigh for point i.
A TGraphErrors is a TGraph with error bars.
A TGraph is an object made of two arrays X and Y with npoints each.
Definition TGraph.h:41
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
Definition TGraph.cxx:2315
void Draw(Option_t *chopt="") override
Draw this graph with its current attributes.
Definition TGraph.cxx:809
TAxis * GetXaxis() const
Get x axis of the graph.
Definition TGraph.cxx:1540
TAxis * GetYaxis() const
Get y axis of the graph.
Definition TGraph.cxx:1549
virtual TH1F * GetHistogram() const
Returns a pointer to the histogram used to draw the axis Takes into account the two following cases.
Definition TGraph.cxx:1402
void SetTitle(const char *title="") override
Change (i.e.
Definition TGraph.cxx:2370
void SetTitle(const char *title) override
Change/set the title.
Definition TH1.cxx:6707
This class displays a legend box (TPaveText) containing several legend entries.
Definition TLegend.h:23
Use the TLine constructor to create a simple line.
Definition TLine.h:22
TObject * First() const override
Return the first object in the list. Returns 0 when list is empty.
Definition TList.cxx:659
TObject * At(Int_t idx) const override
Returns the object at position idx. Returns 0 if idx is out of range.
Definition TList.cxx:357
A TMultiGraph is a collection of TGraph (or derived) objects.
Definition TMultiGraph.h:34
TList * GetListOfGraphs() const
Definition TMultiGraph.h:68
TH1F * GetHistogram()
Returns a pointer to the histogram used to draw the axis.
void Draw(Option_t *chopt="") override
Draw this multigraph with its current attributes.
The TNamed class is the base class for all named ROOT classes.
Definition TNamed.h:29
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:164
const char * GetName() const override
Returns name of object.
Definition TNamed.h:47
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:48
Mother of all ROOT objects.
Definition TObject.h:41
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition TObject.cxx:973
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
Definition TObject.cxx:274
Basic string class.
Definition TString.h:139
const char * Data() const
Definition TString.h:380
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition TString.cxx:2356
TLine * line
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
Double_t x[n]
Definition legend1.C:17
Namespace for the RooStats classes.
Definition Asimov.h:19
void SortItr(Iterator first, Iterator last, IndexIterator index, Bool_t down=kTRUE)
Sort the n1 elements of the Short_t array defined by its iterators.
Definition TMathBase.h:406
Double_t Floor(Double_t x)
Rounds x downward, returning the largest integral value that is not greater than x.
Definition TMath.h:680
void Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index=nullptr, Int_t type=7)
Computes sample quantiles, corresponding to the given probabilities.
Definition TMath.cxx:1207
Definition graph.py:1
TLine l
Definition textangle.C:4