35#if !defined(R__SOLARIS) && !defined(R__ACC) && !defined(R__FBSD) 
   70   if(
x==0.0) 
return 0.0;
 
   72   return log(
x+ax*sqrt(1.+1./(ax*ax)));
 
   84   if(
x==0.0) 
return 0.0;
 
   86   return log(
x+ax*sqrt(1.-1./(ax*ax)));
 
   98   return log((1+
x)/(1-
x))/2;
 
  109   return log(
x)/log(2.0);
 
  124   const Double_t c[20] = {0.42996693560813697, 0.40975987533077106,
 
  125     -0.01858843665014592, 0.00145751084062268,-0.00014304184442340,
 
  126      0.00001588415541880,-0.00000190784959387, 0.00000024195180854,
 
  127     -0.00000003193341274, 0.00000000434545063,-0.00000000060578480,
 
  128      0.00000000008612098,-0.00000000001244332, 0.00000000000182256,
 
  129     -0.00000000000027007, 0.00000000000004042,-0.00000000000000610,
 
  130      0.00000000000000093,-0.00000000000000014, 0.00000000000000002};
 
  133   t=
h=
y=s=
a=alfa=b1=b2=b0=0.;
 
  137   } 
else if (
x == -1) {
 
  146         a = -pi3+hf*(b1*b1-b2*b2);
 
  152      } 
else if (t <= -0.5) {
 
  176      for (
Int_t i=19;i>=0;i--){
 
  177         b0 = 
c[i] + alfa*b1-b2;
 
  181      h = -(s*(b0-
h*b2)+
a);
 
  192   return ::ROOT::Math::erf(
x);
 
  201   return ::ROOT::Math::erfc(
x);
 
  212   Double_t kConst = 0.8862269254527579;     
 
  222      for (
Int_t iter=0; iter<kMaxit; iter++) {
 
  225         if (
TMath::Abs(dy1) < kEps)  {
if (
x < 0) 
return -erfi; 
else return erfi;}
 
  230         if(
TMath::Abs(derfi/erfi) < kEps) {
if (
x < 0) 
return -erfi; 
else return erfi;}
 
  254   if (
n <= 0) 
return 1.;
 
  273   const Double_t w2 = 1.41421356237309505;
 
  275   const Double_t p10 = 2.4266795523053175e+2,  q10 = 2.1505887586986120e+2,
 
  276                  p11 = 2.1979261618294152e+1,  q11 = 9.1164905404514901e+1,
 
  277                  p12 = 6.9963834886191355e+0,  q12 = 1.5082797630407787e+1,
 
  278                  p13 =-3.5609843701815385e-2,  q13 = 1;
 
  280   const Double_t p20 = 3.00459261020161601e+2, q20 = 3.00459260956983293e+2,
 
  281                  p21 = 4.51918953711872942e+2, q21 = 7.90950925327898027e+2,
 
  282                  p22 = 3.39320816734343687e+2, q22 = 9.31354094850609621e+2,
 
  283                  p23 = 1.52989285046940404e+2, q23 = 6.38980264465631167e+2,
 
  284                  p24 = 4.31622272220567353e+1, q24 = 2.77585444743987643e+2,
 
  285                  p25 = 7.21175825088309366e+0, q25 = 7.70001529352294730e+1,
 
  286                  p26 = 5.64195517478973971e-1, q26 = 1.27827273196294235e+1,
 
  287                  p27 =-1.36864857382716707e-7, q27 = 1;
 
  289   const Double_t p30 =-2.99610707703542174e-3, q30 = 1.06209230528467918e-2,
 
  290                  p31 =-4.94730910623250734e-2, q31 = 1.91308926107829841e-1,
 
  291                  p32 =-2.26956593539686930e-1, q32 = 1.05167510706793207e+0,
 
  292                  p33 =-2.78661308609647788e-1, q33 = 1.98733201817135256e+0,
 
  293                  p34 =-2.23192459734184686e-2, q34 = 1;
 
  344   if (
x > 0) 
return 0.5 +0.5*
h;
 
  355   return ::ROOT::Math::tgamma(z);
 
  371   return ::ROOT::Math::inc_gamma(
a, 
x);
 
  386   if (
a <= 0 || 
x <= 0) 
return 0;
 
  394   for (
Int_t i=1; i<=itmax; i++) {
 
  398      if (
Abs(
d) < fpmin) 
d = fpmin;
 
  400      if (
Abs(
c) < fpmin) 
c = fpmin;
 
  404      if (
Abs(
del-1) < eps) 
break;
 
  422   if (
a <= 0 || 
x <= 0) 
return 0;
 
  444   Double_t bw = gamma/((
x-mean)*(
x-mean) + gamma*gamma/4);
 
  460  Double_t k = (0.90031631615710606*mg*
y)/(sqrt(mm+
y)); 
 
  462  Double_t bw = k/(xxMinusmm*xxMinusmm + mg*mg);
 
  473   if (
sigma == 0) 
return 1.e30;
 
  476   if (arg < -39.0 || arg > 39.0) 
return 0.0;
 
  478   if (!norm) 
return res;
 
  479   return res/(2.50662827463100024*
sigma); 
 
  494   if (
sigma <= 0) 
return 0;
 
  496   if (!norm) 
return den;
 
  511   return ::ROOT::Math::lgamma(z);
 
  543   if( av0 >= av1 && av0 >= av2 ) {
 
  549   else if (av1 >= av0 && av1 >= av2) {
 
  564   Double_t foofrac = foo/amax, barfrac = bar/amax;
 
  565   Double_t d = amax * Sqrt(1.+foofrac*foofrac+barfrac*barfrac);
 
  618   return Poisson(ix,par);
 
  639   if (ndf <= 0) 
return 0; 
 
  642      if (chi2 < 0) 
return 0;
 
  646   return ::ROOT::Math::chisquared_cdf_c(chi2,ndf);
 
  692   } 
else if (u < 0.755) {
 
  695   } 
else if (u < 6.8116) {
 
  701      for (
Int_t j=0; j<maxj;j++) {
 
  704      p = 2*(
r[0] - 
r[1] +
r[2] - 
r[3]);
 
  814   if (!
a || !
b || na <= 2 || nb <= 2) {
 
  815      Error(
"KolmogorovTest",
"Sets must have more than 2 points");
 
  831   for (
Int_t i=0;i<na+nb;i++) {
 
  835         if (ia >= na) {ok = 
kTRUE; 
break;}
 
  836      } 
else if (
a[ia] > 
b[ib]) {
 
  839         if (ib >= nb) {ok = 
kTRUE; 
break;}
 
  843         while(ia < na && 
a[ia] == 
x) {
 
  847         while(ib < nb && 
b[ib] == 
x) {
 
  851         if (ia >= na) {ok = 
kTRUE; 
break;}
 
  852         if (ib >= nb) {ok = 
kTRUE; 
break;}
 
  866      printf(
" Kolmogorov Probability = %g, Max Dist = %g\n",prob,rdmax);
 
  900   if ((
sigma < 0 || lg < 0) || (
sigma==0 && lg==0)) {
 
  905      return lg * 0.159154943  / (xx*xx + lg*lg /4); 
 
  913   x = xx / 
sigma / 1.41421356;
 
  914   y = lg / 2 / 
sigma / 1.41421356;
 
  933   Double_t c[6] = { 1.0117281, -0.75197147, 0.012557727, 0.010022008, -0.00024206814, 0.00000050084806};
 
  934   Double_t s[6] = { 1.393237, 0.23115241, -0.15535147, 0.0062183662, 0.000091908299, -0.00000062752596};
 
  935   Double_t t[6] = { 0.31424038, 0.94778839, 1.5976826, 2.2795071, 3.0206370, 3.8897249};
 
  942   Double_t xlim0, xlim1, xlim2, xlim3, xlim4;   
 
  943   Double_t a0=0, d0=0, d2=0, e0=0, e2=0, e4=0, h0=0, h2=0, h4=0, h6=0;
 
  944   Double_t p0=0, p2=0, p4=0, p6=0, p8=0, z0=0, z2=0, z4=0, z6=0, z8=0;
 
  945   Double_t xp[6], xm[6], yp[6], ym[6];          
 
  946   Double_t mq[6], pq[6], mf[6], pf[6];
 
  961   xlim3 = 3.097 * 
y - 0.45;
 
  963   xlim4 = 18.1 * 
y + 1.65;
 
  972      k = yrrtpi / (xq + yq);
 
  973   } 
else if ( abx > xlim1 ) {                   
 
  980      d = rrtpi / (d0 + xq*(d2 + xq));
 
  981      k = 
d * 
y * (a0 + xq);
 
  982   } 
else if ( abx > xlim2 ) {                   
 
  985         h0 = 0.5625 + yq * (4.5 + yq * (10.5 + yq * (6.0 + yq)));
 
  987         h2 = -4.5 + yq * (9.0 + yq * ( 6.0 + yq * 4.0));
 
  988         h4 = 10.5 - yq * (6.0 - yq * 6.0);
 
  989         h6 = -6.0 + yq * 4.0;
 
  990         e0 = 1.875 + yq * (8.25 + yq * (5.5 + yq));
 
  991         e2 = 5.25 + yq * (1.0 + yq * 3.0);
 
  994      d = rrtpi / (h0 + xq * (h2 + xq * (h4 + xq * (h6 + xq))));
 
  995      k = 
d * 
y * (e0 + xq * (e2 + xq * (e4 + xq)));
 
  996   } 
else if ( abx < xlim3 ) {                   
 
  999         z0 = 272.1014 + 
y * (1280.829 + 
y *
 
 1009         z2 = 211.678 + 
y * (902.3066 + 
y *
 
 1015                                  (53.59518 + 
y * 5.0)
 
 1017         z4 = 78.86585 + 
y * (308.1852 + 
y *
 
 1021                                 (80.39278 + 
y * 10.0)
 
 1023         z6 = 22.03523 + 
y * (55.02933 + 
y *
 
 1025                               (53.59518 + 
y * 10.0)
 
 1027         z8 = 1.496460 + 
y * (13.39880 + 
y * 5.0);
 
 1028         p0 = 153.5168 + 
y * (549.3954 + 
y *
 
 1035                                    (4.264678 + 
y * 0.3183291)
 
 1037         p2 = -34.16955 + 
y * (-1.322256+ 
y *
 
 1042                                   (12.79458 + 
y * 1.2733163)
 
 1044         p4 = 2.584042 + 
y * (10.46332 + 
y *
 
 1047                                (12.79568 + 
y * 1.9099744)
 
 1049         p6 = -0.07272979 + 
y * (0.9377051 + 
y *
 
 1050                                 (4.266322 + 
y * 1.273316));
 
 1051         p8 = 0.0005480304 + 
y * 0.3183291;
 
 1053      d = 1.7724538 / (z0 + xq * (z2 + xq * (z4 + xq * (z6 + xq * (z8 + xq)))));
 
 1054      k = 
d * (p0 + xq * (p2 + xq * (p4 + xq * (p6 + xq * p8))));
 
 1057      ypy0q = ypy0 * ypy0;
 
 1059      for (j = 0; j <= 5; j++) {
 
 1062         mf[j] = 1.0 / (mq[j] + ypy0q);
 
 1064         ym[j] = mf[j] * ypy0;
 
 1067         pf[j] = 1.0 / (pq[j] + ypy0q);
 
 1069         yp[j] = pf[j] * ypy0;
 
 1071      if ( abx <= xlim4 ) {                      
 
 1072         for (j = 0; j <= 5; j++) {
 
 1073            k = k + 
c[j]*(ym[j]+yp[j]) - s[j]*(xm[j]-xp[j]) ;
 
 1077         for ( j = 0; j <= 5; j++) {
 
 1079                 (mq[j] * mf[j] - y0 * ym[j])
 
 1080                    + s[j] * yf * xm[j]) / (mq[j]+y0q)
 
 1081                 + (
c[j] * (pq[j] * pf[j] - y0 * yp[j])
 
 1082                   - s[j] * yf * xp[j]) / (pq[j]+y0q);
 
 1084         k = 
y * k + exp( -xq );
 
 1087   return k / 2.506628 / 
sigma; 
 
 1110   Double_t r,s,t,
p,
q,
d,ps3,ps33,qs2,u,
v,tmp,lnu,lnv,su,sv,
y1,
y2,y3;
 
 1114   if (coef[3] == 0) 
return complex;
 
 1115   r    = coef[2]/coef[3];
 
 1116   s    = coef[1]/coef[3];
 
 1117   t    = coef[0]/coef[3];
 
 1120   q    = (2*
r*
r*
r)/27.0 - (
r*s)/3 + t;
 
 1210   if (type<1 || type>9){
 
 1211      printf(
"illegal value of type\n");
 
 1214   Int_t *ind = 
nullptr;
 
 1220         isAllocated = 
kTRUE;
 
 1229   for (
Int_t i=0; i<nprob; i++){
 
 1239            nppm = 
n*prob[i]-0.5;   
 
 1263         if (
type == 4)       { 
a = 0; 
b = 1; }
 
 1264         else if (
type == 5)  { 
a = 0.5; 
b = 0.5; }
 
 1265         else if (
type == 6)  { 
a = 0.; 
b = 0.; }
 
 1266         else if (
type == 7)  { 
a = 1.; 
b = 1.; }
 
 1267         else if (
type == 8)  { 
a = 1./3.; 
b = 
a; }
 
 1268         else if (
type == 9)  { 
a = 3./8.; 
b = 
a; }
 
 1272         nppm = 
a + prob[i] * ( 
n + 1 -
a -
b);       
 
 1275         if (gamma < eps) gamma = 0;
 
 1280      int first  = (j > 0 && j <=
n) ? j-1 : ( j <=0 ) ? 0 : 
n-1;
 
 1281      int second = (j > 0 && j < 
n) ?  j  : ( j <=0 ) ? 0 : 
n-1;
 
 1291      quantiles[i] = (1-gamma)*xj + gamma*xjj;
 
 1316   if (Narr <= 0) 
return;
 
 1317   double *localArr1 = 
new double[Narr];
 
 1318   int    *localArr2 = 
new int[Narr];
 
 1322   for(iEl = 0; iEl < Narr; iEl++) {
 
 1323      localArr1[iEl] = arr1[iEl];
 
 1324      localArr2[iEl] = iEl;
 
 1327   for (iEl = 0; iEl < Narr; iEl++) {
 
 1328      for (iEl2 = Narr-1; iEl2 > iEl; --iEl2) {
 
 1329         if (localArr1[iEl2-1] < localArr1[iEl2]) {
 
 1330            double tmp        = localArr1[iEl2-1];
 
 1331            localArr1[iEl2-1] = localArr1[iEl2];
 
 1332            localArr1[iEl2]   = tmp;
 
 1334            int    tmp2       = localArr2[iEl2-1];
 
 1335            localArr2[iEl2-1] = localArr2[iEl2];
 
 1336            localArr2[iEl2]   = tmp2;
 
 1341   for (iEl = 0; iEl < Narr; iEl++) {
 
 1342      arr2[iEl] = localArr2[iEl];
 
 1344   delete [] localArr2;
 
 1345   delete [] localArr1;
 
 1355   if (Narr <= 0) 
return;
 
 1356   double *localArr1 = 
new double[Narr];
 
 1357   int    *localArr2 = 
new int[Narr];
 
 1361   for (iEl = 0; iEl < Narr; iEl++) {
 
 1362      localArr1[iEl] = arr1[iEl];
 
 1363      localArr2[iEl] = iEl;
 
 1366   for (iEl = 0; iEl < Narr; iEl++) {
 
 1367      for (iEl2 = Narr-1; iEl2 > iEl; --iEl2) {
 
 1368         if (localArr1[iEl2-1] > localArr1[iEl2]) {
 
 1369            double tmp        = localArr1[iEl2-1];
 
 1370            localArr1[iEl2-1] = localArr1[iEl2];
 
 1371            localArr1[iEl2]   = tmp;
 
 1373            int    tmp2       = localArr2[iEl2-1];
 
 1374            localArr2[iEl2-1] = localArr2[iEl2];
 
 1375            localArr2[iEl2]   = tmp2;
 
 1380   for (iEl = 0; iEl < Narr; iEl++) {
 
 1381      arr2[iEl] = localArr2[iEl];
 
 1383   delete [] localArr2;
 
 1384   delete [] localArr1;
 
 1429   const Double_t p1=1.0,          p2=3.5156229,    p3=3.0899424,
 
 1430                  p4=1.2067492,    p5=0.2659732,    p6=3.60768e-2,  p7=4.5813e-3;
 
 1432   const Double_t q1= 0.39894228,  q2= 1.328592e-2, q3= 2.25319e-3,
 
 1433                  q4=-1.57565e-3,  q5= 9.16281e-3,  q6=-2.057706e-2,
 
 1434                  q7= 2.635537e-2, q8=-1.647633e-2, q9= 3.92377e-3;
 
 1463   const Double_t p1=-0.57721566,  p2=0.42278420,   p3=0.23069756,
 
 1464                  p4= 3.488590e-2, p5=2.62698e-3,   p6=1.0750e-4,    p7=7.4e-6;
 
 1466   const Double_t q1= 1.25331414,  q2=-7.832358e-2, q3= 2.189568e-2,
 
 1467                  q4=-1.062446e-2, q5= 5.87872e-3,  q6=-2.51540e-3,  q7=5.3208e-4;
 
 1470      Error(
"TMath::BesselK0", 
"*K0* Invalid argument x = %g\n",
x);
 
 1481      result = (exp(-
x)/sqrt(
x))*(q1+
y*(q2+
y*(q3+
y*(q4+
y*(q5+
y*(q6+
y*q7))))));
 
 1497   const Double_t p1=0.5,          p2=0.87890594,   p3=0.51498869,
 
 1498                  p4=0.15084934,   p5=2.658733e-2,  p6=3.01532e-3,  p7=3.2411e-4;
 
 1500   const Double_t q1= 0.39894228,  q2=-3.988024e-2, q3=-3.62018e-3,
 
 1501                  q4= 1.63801e-3,  q5=-1.031555e-2, q6= 2.282967e-2,
 
 1502                  q7=-2.895312e-2, q8= 1.787654e-2, q9=-4.20059e-3;
 
 1515      result = (exp(ax)/sqrt(ax))*(q1+
y*(q2+
y*(q3+
y*(q4+
y*(q5+
y*(q6+
y*(q7+
y*(q8+
y*q9))))))));
 
 1532   const Double_t p1= 1.,          p2= 0.15443144,  p3=-0.67278579,
 
 1533                  p4=-0.18156897,  p5=-1.919402e-2, p6=-1.10404e-3,  p7=-4.686e-5;
 
 1535   const Double_t q1= 1.25331414,  q2= 0.23498619,  q3=-3.655620e-2,
 
 1536                  q4= 1.504268e-2, q5=-7.80353e-3,  q6= 3.25614e-3,  q7=-6.8245e-4;
 
 1539      Error(
"TMath::BesselK1", 
"*K1* Invalid argument x = %g\n",
x);
 
 1550      result = (exp(-
x)/sqrt(
x))*(q1+
y*(q2+
y*(q3+
y*(q4+
y*(q5+
y*(q6+
y*q7))))));
 
 1563   if (
x <= 0 || 
n < 0) {
 
 1564      Error(
"TMath::BesselK", 
"*K* Invalid argument(s) (n,x) = (%d, %g)\n",
n,
x);
 
 1576   for (
Int_t j=1; j<
n; j++) {
 
 1593   const Double_t kBigPositive = 1.e10;
 
 1594   const Double_t kBigNegative = 1.e-10;
 
 1597      Error(
"TMath::BesselI", 
"*I* Invalid argument (n,x) = (%d, %g)\n",
n,
x);
 
 1604   if (
x == 0) 
return 0;
 
 1612   for (
Int_t j=
m; j>=1; j--) {
 
 1620         bip    *= kBigNegative;
 
 1638   const Double_t p1  = 57568490574.0, p2  = -13362590354.0, p3 = 651619640.7;
 
 1639   const Double_t p4  = -11214424.18,  p5  = 77392.33017,    p6 = -184.9052456;
 
 1640   const Double_t p7  = 57568490411.0, p8  = 1029532985.0,   p9 = 9494680.718;
 
 1641   const Double_t p10 = 59272.64853,   p11 = 267.8532712;
 
 1644   const Double_t q2  = -0.1098628627e-2,  q3  = 0.2734510407e-4;
 
 1645   const Double_t q4  = -0.2073370639e-5,  q5  = 0.2093887211e-6;
 
 1646   const Double_t q6  = -0.1562499995e-1,  q7  = 0.1430488765e-3;
 
 1647   const Double_t q8  = -0.6911147651e-5,  q9  = 0.7621095161e-6;
 
 1648   const Double_t q10 =  0.934935152e-7,   q11 = 0.636619772;
 
 1650   if ((ax=fabs(
x)) < 8) {
 
 1652      result1 = p1 + 
y*(p2 + 
y*(p3 + 
y*(p4  + 
y*(p5  + 
y*p6))));
 
 1653      result2 = p7 + 
y*(p8 + 
y*(p9 + 
y*(p10 + 
y*(p11 + 
y))));
 
 1654      result  = result1/result2;
 
 1659      result1 = 1  + 
y*(q2 + 
y*(q3 + 
y*(q4 + 
y*q5)));
 
 1660      result2 = q6 + 
y*(q7 + 
y*(q8 + 
y*(q9 - 
y*q10)));
 
 1661      result  = sqrt(q11/ax)*(cos(xx)*result1-z*sin(xx)*result2);
 
 1673   const Double_t p1  = 72362614232.0,  p2  = -7895059235.0, p3 = 242396853.1;
 
 1674   const Double_t p4  = -2972611.439,   p5  = 15704.48260,   p6 = -30.16036606;
 
 1675   const Double_t p7  = 144725228442.0, p8  = 2300535178.0,  p9 = 18583304.74;
 
 1676   const Double_t p10 = 99447.43394,    p11 = 376.9991397;
 
 1679   const Double_t q2  = 0.183105e-2,     q3  = -0.3516396496e-4;
 
 1680   const Double_t q4  = 0.2457520174e-5, q5  = -0.240337019e-6;
 
 1681   const Double_t q6  = 0.04687499995,   q7  = -0.2002690873e-3;
 
 1682   const Double_t q8  = 0.8449199096e-5, q9  = -0.88228987e-6;
 
 1683   const Double_t q10 = 0.105787412e-6,  q11 = 0.636619772;
 
 1685   if ((ax=fabs(
x)) < 8) {
 
 1687      result1 = 
x*(p1 + 
y*(p2 + 
y*(p3 + 
y*(p4  + 
y*(p5  + 
y*p6)))));
 
 1688      result2 = p7    + 
y*(p8 + 
y*(p9 + 
y*(p10 + 
y*(p11 + 
y))));
 
 1689      result  = result1/result2;
 
 1694      result1 = 1  + 
y*(q2 + 
y*(q3 + 
y*(q4 + 
y*q5)));
 
 1695      result2 = q6 + 
y*(q7 + 
y*(q8 + 
y*(q9 + 
y*q10)));
 
 1696      result  = sqrt(q11/ax)*(cos(xx)*result1-z*sin(xx)*result2);
 
 1708   const Double_t p1  = -2957821389.,  p2  = 7062834065.0, p3  = -512359803.6;
 
 1709   const Double_t p4  = 10879881.29,   p5  = -86327.92757, p6  = 228.4622733;
 
 1710   const Double_t p7  = 40076544269.,  p8  = 745249964.8,  p9  = 7189466.438;
 
 1711   const Double_t p10 = 47447.26470,   p11 = 226.1030244,  p12 = 0.636619772;
 
 1714   const Double_t q2  = -0.1098628627e-2, q3  = 0.2734510407e-4;
 
 1715   const Double_t q4  = -0.2073370639e-5, q5  = 0.2093887211e-6;
 
 1716   const Double_t q6  = -0.1562499995e-1, q7  = 0.1430488765e-3;
 
 1717   const Double_t q8  = -0.6911147651e-5, q9  = 0.7621095161e-6;
 
 1718   const Double_t q10 = -0.934945152e-7,  q11 = 0.636619772;
 
 1722      result1 = p1 + 
y*(p2 + 
y*(p3 + 
y*(p4  + 
y*(p5  + 
y*p6))));
 
 1723      result2 = p7 + 
y*(p8 + 
y*(p9 + 
y*(p10 + 
y*(p11 + 
y))));
 
 1729      result1 = 1  + 
y*(q2 + 
y*(q3 + 
y*(q4 + 
y*q5)));
 
 1730      result2 = q6 + 
y*(q7 + 
y*(q8 + 
y*(q9 + 
y*q10)));
 
 1731      result  = sqrt(q11/
x)*(sin(xx)*result1+z*cos(xx)*result2);
 
 1742   const Double_t p1  = -0.4900604943e13, p2  = 0.1275274390e13;
 
 1743   const Double_t p3  = -0.5153438139e11, p4  = 0.7349264551e9;
 
 1744   const Double_t p5  = -0.4237922726e7,  p6  = 0.8511937935e4;
 
 1745   const Double_t p7  =  0.2499580570e14, p8  = 0.4244419664e12;
 
 1746   const Double_t p9  =  0.3733650367e10, p10 = 0.2245904002e8;
 
 1747   const Double_t p11 =  0.1020426050e6,  p12 = 0.3549632885e3;
 
 1750   const Double_t q2  =  0.183105e-2,     q3  = -0.3516396496e-4;
 
 1751   const Double_t q4  =  0.2457520174e-5, q5  = -0.240337019e-6;
 
 1752   const Double_t q6  =  0.04687499995,   q7  = -0.2002690873e-3;
 
 1753   const Double_t q8  =  0.8449199096e-5, q9  = -0.88228987e-6;
 
 1754   const Double_t q10 =  0.105787412e-6,  q11 =  0.636619772;
 
 1758      result1 = 
x*(p1 + 
y*(p2 + 
y*(p3 + 
y*(p4 + 
y*(p5  + 
y*p6)))));
 
 1759      result2 = p7 + 
y*(p8 + 
y*(p9 + 
y*(p10 + 
y*(p11  + 
y*(p12+
y)))));
 
 1765      result1 = 1  + 
y*(q2 + 
y*(q3 + 
y*(q4 + 
y*q5)));
 
 1766      result2 = q6 + 
y*(q7 + 
y*(q8 + 
y*(q9 + 
y*q10)));
 
 1767      result  = sqrt(q11/
x)*(sin(xx)*result1+z*cos(xx)*result2);
 
 1779   const Int_t n1 = 15;
 
 1780   const Int_t n2 = 25;
 
 1781   const Double_t c1[16] = { 1.00215845609911981, -1.63969292681309147,
 
 1782                             1.50236939618292819, -.72485115302121872,
 
 1783                              .18955327371093136, -.03067052022988,
 
 1784                              .00337561447375194, -2.6965014312602e-4,
 
 1785                             1.637461692612e-5,   -7.8244408508e-7,
 
 1786                             3.021593188e-8,      -9.6326645e-10,
 
 1787                             2.579337e-11,        -5.8854e-13,
 
 1788                             1.158e-14,           -2
e-16 };
 
 1789   const Double_t c2[26] = {  .99283727576423943, -.00696891281138625,
 
 1790                             1.8205103787037e-4,  -1.063258252844e-5,
 
 1791                             9.8198294287e-7,     -1.2250645445e-7,
 
 1792                             1.894083312e-8,      -3.44358226e-9,
 
 1793                             7.1119102e-10,       -1.6288744e-10,
 
 1794                             4.065681e-11,        -1.091505e-11,
 
 1795                             3.12005e-12,         -9.4202e-13,
 
 1796                             2.9848e-13,          -9.872e-14,
 
 1797                             3.394e-14,           -1.208e-14,
 
 1798                             4.44e-15,            -1.68e-15,
 
 1817      for (i = n1; i >= 0; --i) {
 
 1818         b0 = 
c1[i] + alfa*b1 - b2;
 
 1830      for (i = n2; i >= 0; --i) {
 
 1831         b0 = 
c2[i] + alfa*b1 - b2;
 
 1848   const Int_t n3 = 16;
 
 1849   const Int_t n4 = 22;
 
 1850   const Double_t c3[17] = { .5578891446481605,   -.11188325726569816,
 
 1851                            -.16337958125200939,   .32256932072405902,
 
 1852                            -.14581632367244242,   .03292677399374035,
 
 1853                            -.00460372142093573,  4.434706163314e-4,
 
 1854                            -3.142099529341e-5,   1.7123719938e-6,
 
 1855                            -7.416987005e-8,      2.61837671e-9,
 
 1856                            -7.685839e-11,        1.9067e-12,
 
 1857                            -4.052e-14,           7.5e-16,
 
 1859   const Double_t c4[23] = { 1.00757647293865641,  .00750316051248257,
 
 1860                            -7.043933264519e-5,   2.66205393382e-6,
 
 1861                            -1.8841157753e-7,     1.949014958e-8,
 
 1862                            -2.6126199e-9,        4.236269e-10,
 
 1863                            -7.955156e-11,        1.679973e-11,
 
 1864                            -3.9072e-12,          9.8543e-13,
 
 1865                            -2.6636e-13,          7.645e-14,
 
 1866                            -2.313e-14,           7.33e-15,
 
 1869                            -4
e-17,               2
e-17,-1
e-17 };
 
 1880   } 
else if (
v <= 0.3) {
 
 1885      for (i = 1; i <= i1; ++i) {
 
 1886         h = -
h*
y / ((2*i+ 1)*(2*i + 3));
 
 1896      for (i = n3; i >= 0; --i) {
 
 1897         b0 = 
c3[i] + alfa*b1 - b2;
 
 1908      for (i = n4; i >= 0; --i) {
 
 1909         b0 = c4[i] + alfa*b1 - b2;
 
 1936      for (i=1; i<=60;i++) {
 
 1937         r*=(
x/(2*i+1))*(
x/(2*i+1));
 
 1945      for (i=1; i<=km; i++) {
 
 1946         r*=(2*i-1)*(2*i-1)/
x/
x;
 
 1953      for (i=1; i<=16; i++) {
 
 1954         r=0.125*
r*(2.0*i-1.0)*(2.0*i-1.0)/(i*
x);
 
 1960      sl0=-2.0/(pi*
x)*s+bi0;
 
 1979      for (i=1; i<=60;i++) {
 
 1980         r*=
x*
x/(4.0*i*i-1.0);
 
 1989      for (i=1; i<=km; i++) {
 
 1990         r*=(2*i+3)*(2*i+1)/
x/
x;
 
 1994      sl1=2.0/pi*(-1.0+1.0/(
x*
x)+3.0*s/(
x*
x*
x*
x));
 
 1998      for (i=1; i<=16; i++) {
 
 1999         r=-0.125*
r*(4.0-(2.0*i-1.0)*(2.0*i-1.0))/(i*
x);
 
 2013   return ::ROOT::Math::beta(
p, 
q);
 
 2033   d = 1.0 - qab*
x/qap;
 
 2037   for (
m=1; 
m<=itmax; 
m++) {
 
 2039      aa = 
m*(
b-
m)*
x/((qam+ m2)*(
a+m2));
 
 2046      aa = -(
a+
m)*(qab +
m)*
x/((
a+m2)*(qap+m2));
 
 2057      Info(
"TMath::BetaCf", 
"a or b too big, or itmax too small, a=%g, b=%g, x=%g, h=%g, itmax=%d",
 
 2073   if ((
x<0) || (
x>1) || (
p<=0) || (
q<=0)){
 
 2074      Error(
"TMath::BetaDist", 
"parameter value outside allowed range");
 
 2091   if ((
x<0) || (
x>1) || (
p<=0) || (
q<=0)){
 
 2092      Error(
"TMath::BetaDistI", 
"parameter value outside allowed range");
 
 2104   return ::ROOT::Math::inc_beta(
x, 
a, 
b);
 
 2113   if (k==0 || 
n==k) 
return 1;
 
 2139   if(k <= 0) 
return 1.0;
 
 2140   if(k > 
n) 
return 0.0;
 
 2191   Double_t c[]={0, 0.01, 0.222222, 0.32, 0.4, 1.24, 2.2,
 
 2192                 4.67, 6.66, 6.73, 13.32, 60.0, 70.0,
 
 2193                 84.0, 105.0, 120.0, 127.0, 140.0, 175.0,
 
 2194                 210.0, 252.0, 264.0, 294.0, 346.0, 420.0,
 
 2195                 462.0, 606.0, 672.0, 707.0, 735.0, 889.0,
 
 2196                 932.0, 966.0, 1141.0, 1182.0, 1278.0, 1740.0,
 
 2204   if (ndf <= 0) 
return 0;
 
 2217         if (ch > 
c[6]*ndf + 6)
 
 2224            p1 = 1 + ch * (
c[7]+ch);
 
 2225            p2 = ch * (
c[9] + ch * (
c[8] + ch));
 
 2226            t = -0.5 + (
c[7] + 2 * ch) / p1 - (
c[9] + ch * (
c[10] + 3 * ch)) / p2;
 
 2227            ch = ch - (1 - 
TMath::Exp(
a + 
g + 0.5 * ch + cp * aa) *p2 / p1) / t;
 
 2232      if (ch < 
e) 
return ch;
 
 2235   for (
Int_t i=0; i<maxit; i++){
 
 2242      a = 0.5 * t - 
b * cp;
 
 2243      s1 = (
c[19] + 
a * (
c[17] + 
a * (
c[14] + 
a * (
c[13] + 
a * (
c[12] +
c[11] * 
a))))) / 
c[24];
 
 2244      s2 = (
c[24] + 
a * (
c[29] + 
a * (
c[32] + 
a * (
c[33] + 
c[35] * 
a)))) / 
c[37];
 
 2245      s3 = (
c[19] + 
a * (
c[25] + 
a * (
c[28] + 
c[31] * 
a))) / 
c[37];
 
 2246      s4 = (
c[20] + 
a * (
c[27] + 
c[34] * 
a) + cp * (
c[22] + 
a * (
c[30] + 
c[36] * 
a))) / 
c[38];
 
 2247      s5 = (
c[13] + 
c[21] * 
a + cp * (
c[18] + 
c[26] * 
a)) / 
c[37];
 
 2248      s6 = (
c[15] + cp * (
c[23] + 
c[16] * cp)) / 
c[38];
 
 2249      ch = ch + t * (1 + 0.5 * t * 
s1 - 
b * cp * (
s1 - 
b * (s2 - 
b * (s3 - 
b * (s4 - 
b * (s5 - 
b * s6))))));
 
 2275   return ::ROOT::Math::fdistribution_pdf(
F,
N,M);
 
 2344   if ((
x<mu) || (gamma<=0) || (beta <=0)) {
 
 2345      Error(
"TMath::GammaDist", 
"illegal parameter values x = %f , gamma = %f beta = %f",
x,gamma,beta);
 
 2348   return ::ROOT::Math::gamma_pdf(
x, gamma, beta, mu);
 
 2434   if ((
x<theta) || (
sigma<=0) || (
m<=0)) {
 
 2435      Error(
"TMath::Lognormal", 
"illegal parameter values");
 
 2453   if ((
p<=0)||(
p>=1)) {
 
 2454      Error(
"TMath::NormQuantile", 
"probability outside (0, 1)");
 
 2458   Double_t  a0 = 3.3871328727963666080e0;
 
 2459   Double_t  a1 = 1.3314166789178437745e+2;
 
 2460   Double_t  a2 = 1.9715909503065514427e+3;
 
 2461   Double_t  a3 = 1.3731693765509461125e+4;
 
 2462   Double_t  a4 = 4.5921953931549871457e+4;
 
 2463   Double_t  a5 = 6.7265770927008700853e+4;
 
 2464   Double_t  a6 = 3.3430575583588128105e+4;
 
 2465   Double_t  a7 = 2.5090809287301226727e+3;
 
 2466   Double_t  b1 = 4.2313330701600911252e+1;
 
 2467   Double_t  b2 = 6.8718700749205790830e+2;
 
 2468   Double_t  b3 = 5.3941960214247511077e+3;
 
 2469   Double_t  b4 = 2.1213794301586595867e+4;
 
 2470   Double_t  b5 = 3.9307895800092710610e+4;
 
 2471   Double_t  b6 = 2.8729085735721942674e+4;
 
 2472   Double_t  b7 = 5.2264952788528545610e+3;
 
 2473   Double_t  c0 = 1.42343711074968357734e0;
 
 2477   Double_t  c4 = 1.27045825245236838258e0;
 
 2478   Double_t  c5 = 2.41780725177450611770e-1;
 
 2479   Double_t  c6 = 2.27238449892691845833e-2;
 
 2480   Double_t  c7 = 7.74545014278341407640e-4;
 
 2481   Double_t  d1 = 2.05319162663775882187e0;
 
 2482   Double_t  d2 = 1.67638483018380384940e0;
 
 2483   Double_t  d3 = 6.89767334985100004550e-1;
 
 2484   Double_t  d4 = 1.48103976427480074590e-1;
 
 2485   Double_t  d5 = 1.51986665636164571966e-2;
 
 2486   Double_t  d6 = 5.47593808499534494600e-4;
 
 2487   Double_t  d7 = 1.05075007164441684324e-9;
 
 2488   Double_t  e0 = 6.65790464350110377720e0;
 
 2489   Double_t  e1 = 5.46378491116411436990e0;
 
 2490   Double_t  e2 = 1.78482653991729133580e0;
 
 2491   Double_t  e3 = 2.96560571828504891230e-1;
 
 2492   Double_t  e4 = 2.65321895265761230930e-2;
 
 2493   Double_t  e5 = 1.24266094738807843860e-3;
 
 2494   Double_t  e6 = 2.71155556874348757815e-5;
 
 2495   Double_t  e7 = 2.01033439929228813265e-7;
 
 2497   Double_t  f2 = 1.36929880922735805310e-1;
 
 2498   Double_t  f3 = 1.48753612908506148525e-2;
 
 2499   Double_t  f4 = 7.86869131145613259100e-4;
 
 2500   Double_t  f5 = 1.84631831751005468180e-5;
 
 2501   Double_t  f6 = 1.42151175831644588870e-7;
 
 2502   Double_t  f7 = 2.04426310338993978564e-15;
 
 2513      quantile = 
q* (((((((a7 * 
r + a6) * 
r + a5) * 
r + a4) * 
r + a3)
 
 2514                 * 
r + a2) * 
r + a1) * 
r + a0) /
 
 2515                 (((((((b7 * 
r + b6) * 
r + b5) * 
r + b4) * 
r + b3)
 
 2516                 * 
r + b2) * 
r + b1) * 
r + 1.);
 
 2527            quantile=(((((((c7 * 
r + c6) * 
r + c5) * 
r + c4) * 
r + 
c3)
 
 2528                     * 
r + 
c2) * 
r + 
c1) * 
r + c0) /
 
 2529                     (((((((d7 * 
r + d6) * 
r + d5) * 
r + d4) * 
r + d3)
 
 2530                     * 
r + d2) * 
r + d1) * 
r + 1);
 
 2533            quantile=(((((((e7 * 
r + e6) * 
r + e5) * 
r + e4) * 
r + e3)
 
 2534                     * 
r + e2) * 
r + e1) * 
r + e0) /
 
 2535                     (((((((f7 * 
r + f6) * 
r + f5) * 
r + f4) * 
r + f3)
 
 2536                     * 
r + f2) * 
r + 
f1) * 
r + 1);
 
 2538         if (
q<0) quantile=-quantile;
 
 2558   for(i=
n-2; i>-1; i--) {
 
 2565   if(i1==-1) 
return kFALSE;
 
 2569      for(i=
n-1;i>i1;i--) {
 
 2580      for(i=0;i<(
n-i1-1)/2;i++) {
 
 2674   if (ndf<1 || p>=1 || 
p<=0) {
 
 2675      Error(
"TMath::StudentQuantile", 
"illegal parameter values");
 
 2678   if ((lower_tail && 
p>0.5)||(!lower_tail && 
p<0.5)){
 
 2680      q=2*(lower_tail ? (1-
p) : 
p);
 
 2683      q=2*(lower_tail? 
p : (1-
p));
 
 2703            if (ndf<5) 
c+=0.3*(ndf-4.5)*(
x+0.6);
 
 2704            c+=(((0.05*
d*
x-5.)*
x-7.)*
x-2.)*
x +
b;
 
 2705            y=(((((0.4*
y+6.3)*
y+36.)*
y+94.5)/
c - 
y-3.)/
b+1)*
x;
 
 2710            y=((1./(((ndf+6.)/(ndf*
y)-0.089*
d-0.822)*(ndf+2.)*3)+0.5/(ndf+4.))*
y-1.)*
 
 2711              (ndf+1.)/(ndf+2.)+1/
y;
 
 2716   if(neg) quantile=-quantile;
 
 2812   if (
x < ac[0]) 
v = 0;
 
 2813   else if (
x >=ac[8]) 
v = 1;
 
 2816      k = 
Int_t(xx*ac[10]);
 
 2817      v = 
TMath::Min(wcm[k] + (xx - k*ac[9])*(wcm[k+1]-wcm[k])*ac[10], 1.);
 
 2833   return ::ROOT::Math::landau_cdf(
x);
 
 2843   Double_t BKMNX1 = 0.02, BKMNY1 = 0.05, BKMNX2 = 0.12, BKMNY2 = 0.05,
 
 2844      BKMNX3 = 0.22, BKMNY3 = 0.05, BKMXX1 = 0.1 , BKMXY1 = 1,
 
 2845      BKMXX2 = 0.2 , BKMXY2 = 1   , BKMXX3 = 0.3 , BKMXY3 = 1;
 
 2847   Double_t FBKX1 = 2/(BKMXX1-BKMNX1), FBKX2 = 2/(BKMXX2-BKMNX2),
 
 2848      FBKX3 = 2/(BKMXX3-BKMNX3), FBKY1 = 2/(BKMXY1-BKMNY1),
 
 2849      FBKY2 = 2/(BKMXY2-BKMNY2), FBKY3 = 2/(BKMXY3-BKMNY3);
 
 2851   Double_t FNINV[] = {0, 1, 0.5, 0.33333333, 0.25, 0.2};
 
 2853   Double_t EDGEC[]= {0, 0, 0.16666667e+0, 0.41666667e-1, 0.83333333e-2,
 
 2854                      0.13888889e-1, 0.69444444e-2, 0.77160493e-3};
 
 2856   Double_t U1[] = {0, 0.25850868e+0,  0.32477982e-1, -0.59020496e-2,
 
 2857                    0.            , 0.24880692e-1,  0.47404356e-2,
 
 2858                    -0.74445130e-3,  0.73225731e-2,  0.           ,
 
 2859                    0.11668284e-2,  0.           , -0.15727318e-2,-0.11210142e-2};
 
 2861   Double_t U2[] = {0, 0.43142611e+0,  0.40797543e-1, -0.91490215e-2,
 
 2862                    0.           ,  0.42127077e-1,  0.73167928e-2,
 
 2863                    -0.14026047e-2,  0.16195241e-1,  0.24714789e-2,
 
 2864                    0.20751278e-2,  0.           , -0.25141668e-2,-0.14064022e-2};
 
 2866   Double_t U3[] = {0,  0.25225955e+0,  0.64820468e-1, -0.23615759e-1,
 
 2867                    0.           ,  0.23834176e-1,  0.21624675e-2,
 
 2868                    -0.26865597e-2, -0.54891384e-2,  0.39800522e-2,
 
 2869                    0.48447456e-2, -0.89439554e-2, -0.62756944e-2,-0.24655436e-2};
 
 2871   Double_t U4[] = {0, 0.12593231e+1, -0.20374501e+0,  0.95055662e-1,
 
 2872                    -0.20771531e-1, -0.46865180e-1, -0.77222986e-2,
 
 2873                    0.32241039e-2,  0.89882920e-2, -0.67167236e-2,
 
 2874                    -0.13049241e-1,  0.18786468e-1,  0.14484097e-1};
 
 2876   Double_t U5[] = {0, -0.24864376e-1, -0.10368495e-2,  0.14330117e-2,
 
 2877                    0.20052730e-3,  0.18751903e-2,  0.12668869e-2,
 
 2878                    0.48736023e-3,  0.34850854e-2,  0.           ,
 
 2879                    -0.36597173e-3,  0.19372124e-2,  0.70761825e-3, 0.46898375e-3};
 
 2881   Double_t U6[] = {0,  0.35855696e-1, -0.27542114e-1,  0.12631023e-1,
 
 2882                    -0.30188807e-2, -0.84479939e-3,  0.           ,
 
 2883                    0.45675843e-3, -0.69836141e-2,  0.39876546e-2,
 
 2884                    -0.36055679e-2,  0.           ,  0.15298434e-2, 0.19247256e-2};
 
 2886   Double_t U7[] = {0, 0.10234691e+2, -0.35619655e+1,  0.69387764e+0,
 
 2887                    -0.14047599e+0, -0.19952390e+1, -0.45679694e+0,
 
 2888                    0.           ,  0.50505298e+0};
 
 2889   Double_t U8[] = {0,  0.21487518e+2, -0.11825253e+2,  0.43133087e+1,
 
 2890                    -0.14500543e+1, -0.34343169e+1, -0.11063164e+1,
 
 2891                    -0.21000819e+0,  0.17891643e+1, -0.89601916e+0,
 
 2892                    0.39120793e+0,  0.73410606e+0,  0.           ,-0.32454506e+0};
 
 2894   Double_t V1[] = {0, 0.27827257e+0, -0.14227603e-2,  0.24848327e-2,
 
 2895                    0.           ,  0.45091424e-1,  0.80559636e-2,
 
 2896                    -0.38974523e-2,  0.           , -0.30634124e-2,
 
 2897                    0.75633702e-3,  0.54730726e-2,  0.19792507e-2};
 
 2899   Double_t V2[] = {0, 0.41421789e+0, -0.30061649e-1,  0.52249697e-2,
 
 2900                    0.           ,  0.12693873e+0,  0.22999801e-1,
 
 2901                    -0.86792801e-2,  0.31875584e-1, -0.61757928e-2,
 
 2902                    0.           ,  0.19716857e-1,  0.32596742e-2};
 
 2904   Double_t V3[] = {0, 0.20191056e+0, -0.46831422e-1,  0.96777473e-2,
 
 2905                    -0.17995317e-2,  0.53921588e-1,  0.35068740e-2,
 
 2906                    -0.12621494e-1, -0.54996531e-2, -0.90029985e-2,
 
 2907                    0.34958743e-2,  0.18513506e-1,  0.68332334e-2,-0.12940502e-2};
 
 2909   Double_t V4[] = {0, 0.13206081e+1,  0.10036618e+0, -0.22015201e-1,
 
 2910                    0.61667091e-2, -0.14986093e+0, -0.12720568e-1,
 
 2911                    0.24972042e-1, -0.97751962e-2,  0.26087455e-1,
 
 2912                    -0.11399062e-1, -0.48282515e-1, -0.98552378e-2};
 
 2914   Double_t V5[] = {0, 0.16435243e-1,  0.36051400e-1,  0.23036520e-2,
 
 2915                    -0.61666343e-3, -0.10775802e-1,  0.51476061e-2,
 
 2916                    0.56856517e-2, -0.13438433e-1,  0.           ,
 
 2917                    0.           , -0.25421507e-2,  0.20169108e-2,-0.15144931e-2};
 
 2919   Double_t V6[] = {0, 0.33432405e-1,  0.60583916e-2, -0.23381379e-2,
 
 2920                    0.83846081e-3, -0.13346861e-1, -0.17402116e-2,
 
 2921                    0.21052496e-2,  0.15528195e-2,  0.21900670e-2,
 
 2922                    -0.13202847e-2, -0.45124157e-2, -0.15629454e-2, 0.22499176e-3};
 
 2924   Double_t V7[] = {0, 0.54529572e+1, -0.90906096e+0,  0.86122438e-1,
 
 2925                    0.           , -0.12218009e+1, -0.32324120e+0,
 
 2926                    -0.27373591e-1,  0.12173464e+0,  0.           ,
 
 2927                    0.           ,  0.40917471e-1};
 
 2929   Double_t V8[] = {0, 0.93841352e+1, -0.16276904e+1,  0.16571423e+0,
 
 2930                    0.           , -0.18160479e+1, -0.50919193e+0,
 
 2931                    -0.51384654e-1,  0.21413992e+0,  0.           ,
 
 2932                    0.           ,  0.66596366e-1};
 
 2934   Double_t W1[] = {0, 0.29712951e+0,  0.97572934e-2,  0.           ,
 
 2935                    -0.15291686e-2,  0.35707399e-1,  0.96221631e-2,
 
 2936                    -0.18402821e-2, -0.49821585e-2,  0.18831112e-2,
 
 2937                    0.43541673e-2,  0.20301312e-2, -0.18723311e-2,-0.73403108e-3};
 
 2939   Double_t W2[] = {0, 0.40882635e+0,  0.14474912e-1,  0.25023704e-2,
 
 2940                    -0.37707379e-2,  0.18719727e+0,  0.56954987e-1,
 
 2941                    0.           ,  0.23020158e-1,  0.50574313e-2,
 
 2942                    0.94550140e-2,  0.19300232e-1};
 
 2944   Double_t W3[] = {0, 0.16861629e+0,  0.           ,  0.36317285e-2,
 
 2945                    -0.43657818e-2,  0.30144338e-1,  0.13891826e-1,
 
 2946                    -0.58030495e-2, -0.38717547e-2,  0.85359607e-2,
 
 2947                    0.14507659e-1,  0.82387775e-2, -0.10116105e-1,-0.55135670e-2};
 
 2949   Double_t W4[] = {0, 0.13493891e+1, -0.26863185e-2, -0.35216040e-2,
 
 2950                    0.24434909e-1, -0.83447911e-1, -0.48061360e-1,
 
 2951                    0.76473951e-2,  0.24494430e-1, -0.16209200e-1,
 
 2952                    -0.37768479e-1, -0.47890063e-1,  0.17778596e-1, 0.13179324e-1};
 
 2954   Double_t W5[] = {0,  0.10264945e+0,  0.32738857e-1,  0.           ,
 
 2955                    0.43608779e-2, -0.43097757e-1, -0.22647176e-2,
 
 2956                    0.94531290e-2, -0.12442571e-1, -0.32283517e-2,
 
 2957                    -0.75640352e-2, -0.88293329e-2,  0.52537299e-2, 0.13340546e-2};
 
 2959   Double_t W6[] = {0, 0.29568177e-1, -0.16300060e-2, -0.21119745e-3,
 
 2960                    0.23599053e-2, -0.48515387e-2, -0.40797531e-2,
 
 2961                    0.40403265e-3,  0.18200105e-2, -0.14346306e-2,
 
 2962                    -0.39165276e-2, -0.37432073e-2,  0.19950380e-2, 0.12222675e-2};
 
 2964   Double_t W8[] = {0,  0.66184645e+1, -0.73866379e+0,  0.44693973e-1,
 
 2965                    0.           , -0.14540925e+1, -0.39529833e+0,
 
 2966                    -0.44293243e-1,  0.88741049e-1};
 
 2969   if (rkappa <0.01 || rkappa >12) {
 
 2970      Error(
"Vavilov distribution", 
"illegal value of kappa");
 
 2978   Double_t x, 
y, xx, yy, 
x2, x3, 
y2, y3, 
xy, p2, p3, q2, q3, pq;
 
 2979   if (rkappa >= 0.29) {
 
 2984      AC[0] = (-0.032227*beta2-0.074275)*rkappa + (0.24533*beta2+0.070152)*wk + (-0.55610*beta2-3.1579);
 
 2985      AC[8] = (-0.013483*beta2-0.048801)*rkappa + (-1.6921*beta2+8.3656)*wk + (-0.73275*beta2-3.5226);
 
 2988      for (j=1; j<=4; j++) {
 
 2989         DRK[j+1] = DRK[1]*DRK[j];
 
 2990         DSIGM[j+1] = DSIGM[1]*DSIGM[j];
 
 2991         ALFA[j+1] = (FNINV[j]-beta2*FNINV[j+1])*DRK[j];
 
 2995      HC[2]=ALFA[3]*DSIGM[3];
 
 2996      HC[3]=(3*ALFA[2]*ALFA[2] + ALFA[4])*DSIGM[4]-3;
 
 2997      HC[4]=(10*ALFA[2]*ALFA[3]+ALFA[5])*DSIGM[5]-10*
HC[2];
 
 3001      for (j=2; j<=7; j++)
 
 3003      HC[8]=0.39894228*
HC[1];
 
 3005   else if (rkappa >=0.22) {
 
 3008      x = 1+(rkappa-BKMXX3)*FBKX3;
 
 3022      AC[1] = W1[1] + W1[2]*
x + W1[4]*x3 + W1[5]*
y + W1[6]*
y2 + W1[7]*y3 +
 
 3023         W1[8]*
xy + W1[9]*p2 + W1[10]*p3 + W1[11]*q2 + W1[12]*q3 + W1[13]*pq;
 
 3024      AC[2] = W2[1] + W2[2]*
x + W2[3]*
x2 + W2[4]*x3 + W2[5]*
y + W2[6]*
y2 +
 
 3025         W2[8]*
xy + W2[9]*p2 + W2[10]*p3 + W2[11]*q2;
 
 3026      AC[3] = W3[1] + W3[3]*
x2 + W3[4]*x3 + W3[5]*
y + W3[6]*
y2 + W3[7]*y3 +
 
 3027         W3[8]*
xy + W3[9]*p2 + W3[10]*p3 + W3[11]*q2 + W3[12]*q3 + W3[13]*pq;
 
 3028      AC[4] = W4[1] + W4[2]*
x + W4[3]*
x2 + W4[4]*x3 + W4[5]*
y + W4[6]*
y2 + W4[7]*y3 +
 
 3029         W4[8]*
xy + W4[9]*p2 + W4[10]*p3 + W4[11]*q2 + W4[12]*q3 + W4[13]*pq;
 
 3030      AC[5] = W5[1] + W5[2]*
x + W5[4]*x3 + W5[5]*
y + W5[6]*
y2 + W5[7]*y3 +
 
 3031         W5[8]*
xy + W5[9]*p2 + W5[10]*p3 + W5[11]*q2 + W5[12]*q3 + W5[13]*pq;
 
 3032      AC[6] = W6[1] + W6[2]*
x + W6[3]*
x2 + W6[4]*x3 + W6[5]*
y + W6[6]*
y2 + W6[7]*y3 +
 
 3033         W6[8]*
xy + W6[9]*p2 + W6[10]*p3 + W6[11]*q2 + W6[12]*q3 + W6[13]*pq;
 
 3034      AC[8] = W8[1] + W8[2]*
x + W8[3]*
x2 + W8[5]*
y + W8[6]*
y2 + W8[7]*y3 + W8[8]*
xy;
 
 3036   } 
else if (rkappa >= 0.12) {
 
 3039      x = 1 + (rkappa-BKMXX2)*FBKX2;
 
 3053      AC[1] = V1[1] + V1[2]*
x + V1[3]*
x2 + V1[5]*
y + V1[6]*
y2 + V1[7]*y3 +
 
 3054         V1[9]*p2 + V1[10]*p3 + V1[11]*q2 + V1[12]*q3;
 
 3055      AC[2] = V2[1] + V2[2]*
x + V2[3]*
x2 + V2[5]*
y + V2[6]*
y2 + V2[7]*y3 +
 
 3056         V2[8]*
xy + V2[9]*p2 + V2[11]*q2 + V2[12]*q3;
 
 3057      AC[3] = V3[1] + V3[2]*
x + V3[3]*
x2 + V3[4]*x3 + V3[5]*
y + V3[6]*
y2 + V3[7]*y3 +
 
 3058         V3[8]*
xy + V3[9]*p2 + V3[10]*p3 + V3[11]*q2 + V3[12]*q3 + V3[13]*pq;
 
 3059      AC[4] = V4[1] + V4[2]*
x + V4[3]*
x2 + V4[4]*x3 + V4[5]*
y + V4[6]*
y2 + V4[7]*y3 +
 
 3060         V4[8]*
xy + V4[9]*p2 + V4[10]*p3 + V4[11]*q2 + V4[12]*q3;
 
 3061      AC[5] = V5[1] + V5[2]*
x + V5[3]*
x2 + V5[4]*x3 + V5[5]*
y + V5[6]*
y2 + V5[7]*y3 +
 
 3062         V5[8]*
xy + V5[11]*q2 + V5[12]*q3 + V5[13]*pq;
 
 3063      AC[6] = V6[1] + V6[2]*
x + V6[3]*
x2 + V6[4]*x3 + V6[5]*
y + V6[6]*
y2 + V6[7]*y3 +
 
 3064         V6[8]*
xy + V6[9]*p2 + V6[10]*p3 + V6[11]*q2 + V6[12]*q3 + V6[13]*pq;
 
 3065      AC[7] = V7[1] + V7[2]*
x + V7[3]*
x2 + V7[5]*
y + V7[6]*
y2 + V7[7]*y3 +
 
 3066         V7[8]*
xy + V7[11]*q2;
 
 3067      AC[8] = V8[1] + V8[2]*
x + V8[3]*
x2 + V8[5]*
y + V8[6]*
y2 + V8[7]*y3 +
 
 3068         V8[8]*
xy + V8[11]*q2;
 
 3072      if (rkappa >=0.02) itype = 3;
 
 3074      x = 1+(rkappa-BKMXX1)*FBKX1;
 
 3089         AC[1] = U1[1] + U1[2]*
x + U1[3]*
x2 + U1[5]*
y + U1[6]*
y2 + U1[7]*y3 +
 
 3090            U1[8]*
xy + U1[10]*p3 + U1[12]*q3 + U1[13]*pq;
 
 3091         AC[2] = U2[1] + U2[2]*
x + U2[3]*
x2 + U2[5]*
y + U2[6]*
y2 + U2[7]*y3 +
 
 3092            U2[8]*
xy + U2[9]*p2 + U2[10]*p3 + U2[12]*q3 + U2[13]*pq;
 
 3093         AC[3] = U3[1] + U3[2]*
x + U3[3]*
x2 + U3[5]*
y + U3[6]*
y2 + U3[7]*y3 +
 
 3094            U3[8]*
xy + U3[9]*p2 + U3[10]*p3 + U3[11]*q2 + U3[12]*q3 + U3[13]*pq;
 
 3095         AC[4] = U4[1] + U4[2]*
x + U4[3]*
x2 + U4[4]*x3 + U4[5]*
y + U4[6]*
y2 + U4[7]*y3 +
 
 3096            U4[8]*
xy + U4[9]*p2 + U4[10]*p3 + U4[11]*q2 + U4[12]*q3;
 
 3097         AC[5] = U5[1] + U5[2]*
x + U5[3]*
x2 + U5[4]*x3 + U5[5]*
y + U5[6]*
y2 + U5[7]*y3 +
 
 3098            U5[8]*
xy + U5[10]*p3 + U5[11]*q2 + U5[12]*q3 + U5[13]*pq;
 
 3099         AC[6] = U6[1] + U6[2]*
x + U6[3]*
x2 + U6[4]*x3 + U6[5]*
y + U6[7]*y3 +
 
 3100            U6[8]*
xy + U6[9]*p2 + U6[10]*p3 + U6[12]*q3 + U6[13]*pq;
 
 3101         AC[7] = U7[1] + U7[2]*
x + U7[3]*
x2 + U7[4]*x3 + U7[5]*
y + U7[6]*
y2 + U7[8]*
xy;
 
 3103      AC[8] = U8[1] + U8[2]*
x + U8[3]*
x2 + U8[4]*x3 + U8[5]*
y + U8[6]*
y2 + U8[7]*y3 +
 
 3104         U8[8]*
xy + U8[9]*p2 + U8[10]*p3 + U8[11]*q2 + U8[13]*pq;
 
 3108   AC[9] = (AC[8] - AC[0])/npt;
 
 3111      x = (AC[7]-AC[8])/(AC[7]*AC[8]);
 
 3114      AC[11] = p2*(AC[1]*
TMath::Exp(-AC[2]*(AC[7]+AC[5]*p2)-
 
 3115                                    AC[3]*
TMath::Exp(-AC[4]*(AC[7]+AC[6]*p2)))-0.045*
y/AC[7])/(1+
x*
y*AC[7]);
 
 3116      AC[12] = (0.045+
x*AC[11])*
y;
 
 3118   if (itype == 4) AC[13] = 0.995/
LandauI(AC[8]);
 
 3120   if (
mode==0) 
return;
 
 3127   for (k=1; k<=npt; k++) {
 
 3130      WCM[k] = WCM[k-1] + fl + fu;
 
 3134   for (k=1; k<=npt; k++)
 
 3144   if (rlam < AC[0] || rlam > AC[8])
 
 3151      x = (rlam + 
HC[0])*
HC[1];
 
 3154      for (k=2; k<=8; k++) {
 
 3156         h[k+1] = 
x*
h[k]-fn*
h[k-1];
 
 3159      for (k=2; k<=6; k++)
 
 3163   else if (itype == 2) {
 
 3167   else if (itype == 3) {
 
 3173         v = (AC[11]*
x + AC[12])*
x;
 
 3176   else if (itype == 4) {
 
 3184#ifdef R__HAS_VECCORE 
#define NamespaceImp(name)
 
void Info(const char *location, const char *msgfmt,...)
Use this function for informational messages.
 
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
 
winID h TVirtualViewer3D TVirtualGLPainter p
 
winID h TVirtualViewer3D vv
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t del
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
 
Option_t Option_t TPoint TPoint const char x2
 
Option_t Option_t TPoint xy
 
Option_t Option_t TPoint TPoint const char mode
 
Option_t Option_t TPoint TPoint const char y2
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
Option_t Option_t TPoint TPoint const char y1
 
UInt_t Hash(const TString &s)
 
void ToUpper()
Change string to upper case.
 
UInt_t Hash(ECaseCompare cmp=kExact) const
Return hash value.
 
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
 
double landau_pdf(double x, double xi=1, double x0=0)
Probability density function of the Landau distribution:
 
double fdistribution_cdf(double x, double n, double m, double x0=0)
Cumulative distribution function of the F-distribution (lower tail).
 
Double_t FDistI(Double_t F, Double_t N, Double_t M)
Calculates the cumulative distribution function of F-distribution, this function occurs in the statis...
 
Double_t LogNormal(Double_t x, Double_t sigma, Double_t theta=0, Double_t m=1)
Computes the density of LogNormal distribution at point x.
 
Double_t DiLog(Double_t x)
Modified Struve functions of order 1.
 
Double_t BetaDist(Double_t x, Double_t p, Double_t q)
Computes the probability density function of the Beta distribution (the distribution function is comp...
 
Double_t GamSer(Double_t a, Double_t x)
Computation of the incomplete gamma function P(a,x) via its series representation.
 
Double_t VavilovDenEval(Double_t rlam, Double_t *AC, Double_t *HC, Int_t itype)
Internal function, called by Vavilov and VavilovSet.
 
Double_t ACos(Double_t)
Returns the principal value of the arc cosine of x, expressed in radians.
 
Double_t BesselI(Int_t n, Double_t x)
Computes the Integer Order Modified Bessel function I_n(x) for n=0,1,2,... and any real x.
 
Element KOrdStat(Size n, const Element *a, Size k, Size *work=0)
Returns k_th order statistic of the array a of size n (k_th smallest element out of n elements).
 
Double_t Gaus(Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE)
Calculates a gaussian function with mean and sigma.
 
Double_t Factorial(Int_t i)
Computes factorial(n).
 
Double_t KolmogorovTest(Int_t na, const Double_t *a, Int_t nb, const Double_t *b, Option_t *option)
Statistical test whether two one-dimensional sets of points are compatible with coming from the same ...
 
Int_t Nint(T x)
Round to nearest integer. Rounds half integers to the nearest even integer.
 
Double_t BinomialI(Double_t p, Int_t n, Int_t k)
Suppose an event occurs with probability p per trial Then the probability P of its occurring k or mor...
 
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
 
Double_t Vavilov(Double_t x, Double_t kappa, Double_t beta2)
Returns the value of the Vavilov density function.
 
Double_t Binomial(Int_t n, Int_t k)
Calculates the binomial coefficient n over k.
 
Float_t Normalize(Float_t v[3])
Normalize a vector v in place.
 
Double_t Prob(Double_t chi2, Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf...
 
Double_t Log2(Double_t x)
Returns the binary (base-2) logarithm of x.
 
Double_t BesselK1(Double_t x)
Modified Bessel function I_1(x)
 
void BubbleHigh(Int_t Narr, Double_t *arr1, Int_t *arr2)
Bubble sort variant to obtain the order of an array's elements into an index in order to do more usef...
 
Double_t Exp(Double_t x)
Returns the base-e exponential function of x, which is e raised to the power x.
 
Double_t BesselI1(Double_t x)
Modified Bessel function K_0(x)
 
Double_t Erf(Double_t x)
Computation of the error function erf(x).
 
Bool_t Permute(Int_t n, Int_t *a)
Simple recursive algorithm to find the permutations of n natural numbers, not necessarily all distinc...
 
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
 
Double_t PoissonI(Double_t x, Double_t par)
Computes the Discrete Poisson distribution function for (x,par).
 
Double_t CauchyDist(Double_t x, Double_t t=0, Double_t s=1)
Computes the density of Cauchy distribution at point x by default, standard Cauchy distribution is us...
 
Double_t StruveL1(Double_t x)
Modified Struve functions of order 0.
 
Double_t ASinH(Double_t)
Returns the area hyperbolic sine of x.
 
Double_t LaplaceDistI(Double_t x, Double_t alpha=0, Double_t beta=1)
Computes the distribution function of Laplace distribution at point x, with location parameter alpha ...
 
ULong_t Hash(const void *txt, Int_t ntxt)
Calculates hash index from any char string.
 
Double_t BreitWigner(Double_t x, Double_t mean=0, Double_t gamma=1)
Calculates a Breit Wigner function with mean and gamma.
 
T1 Sign(T1 a, T2 b)
Returns a value with the magnitude of a and the sign of b.
 
Double_t Landau(Double_t x, Double_t mpv=0, Double_t sigma=1, Bool_t norm=kFALSE)
The LANDAU function.
 
Double_t Voigt(Double_t x, Double_t sigma, Double_t lg, Int_t r=4)
Computation of Voigt function (normalised).
 
Double_t Student(Double_t T, Double_t ndf)
Computes density function for Student's t- distribution (the probability function (integral of densit...
 
constexpr Double_t PiOver2()
 
Double_t BetaDistI(Double_t x, Double_t p, Double_t q)
Computes the distribution function of the Beta distribution.
 
Int_t FloorNint(Double_t x)
Returns the nearest integer of TMath::Floor(x).
 
Double_t ACosH(Double_t)
Returns the nonnegative area hyperbolic cosine of x.
 
Double_t BesselK0(Double_t x)
Modified Bessel function I_0(x)
 
Double_t BesselY0(Double_t x)
Bessel function J1(x) for any real x.
 
Double_t BetaCf(Double_t x, Double_t a, Double_t b)
Continued fraction evaluation by modified Lentz's method used in calculation of incomplete Beta funct...
 
Double_t ErfInverse(Double_t x)
Returns the inverse error function.
 
Double_t LaplaceDist(Double_t x, Double_t alpha=0, Double_t beta=1)
Computes the probability density function of Laplace distribution at point x, with location parameter...
 
Double_t Log(Double_t x)
Returns the natural logarithm of x.
 
Double_t Erfc(Double_t x)
Computes the complementary error function erfc(x).
 
Double_t VavilovI(Double_t x, Double_t kappa, Double_t beta2)
Returns the value of the Vavilov distribution function.
 
Double_t Beta(Double_t p, Double_t q)
Calculates Beta-function Gamma(p)*Gamma(q)/Gamma(p+q).
 
Double_t Poisson(Double_t x, Double_t par)
Computes the Poisson distribution function for (x,par).
 
Double_t Sqrt(Double_t x)
Returns the square root of x.
 
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
 
Double_t BesselJ0(Double_t x)
Modified Bessel function K_1(x)
 
Double_t Gamma(Double_t z)
Computation of gamma(z) for all z.
 
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
 
Double_t StruveL0(Double_t x)
Struve functions of order 1.
 
Double_t NormQuantile(Double_t p)
Computes quantiles for standard normal distribution N(0, 1) at probability p.
 
Double_t GamCf(Double_t a, Double_t x)
Computation of the incomplete gamma function P(a,x) via its continued fraction representation.
 
Double_t Hypot(Double_t x, Double_t y)
Returns sqrt(x*x + y*y)
 
Double_t Cos(Double_t)
Returns the cosine of an angle of x radians.
 
void Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index=nullptr, Int_t type=7)
Computes sample quantiles, corresponding to the given probabilities.
 
Double_t StruveH0(Double_t x)
Bessel function Y1(x) for positive x.
 
Double_t LnGamma(Double_t z)
Computation of ln[gamma(z)] for all z.
 
Double_t KolmogorovProb(Double_t z)
Calculates the Kolmogorov distribution function,.
 
Bool_t RootsCubic(const Double_t coef[4], Double_t &a, Double_t &b, Double_t &c)
Calculates roots of polynomial of 3rd order a*x^3 + b*x^2 + c*x + d, where.
 
Double_t ChisquareQuantile(Double_t p, Double_t ndf)
Evaluate the quantiles of the chi-squared probability distribution function.
 
Double_t Sin(Double_t)
Returns the sine of an angle of x radians.
 
Double_t FDist(Double_t F, Double_t N, Double_t M)
Computes the density function of F-distribution (probability function, integral of density,...
 
Double_t SignalingNaN()
Returns a signaling NaN as defined by IEEE 754](http://en.wikipedia.org/wiki/NaN#Signaling_NaN).
 
Double_t BreitWignerRelativistic(Double_t x, Double_t median=0, Double_t gamma=1)
Calculates a Relativistic Breit Wigner function with median and gamma.
 
void BubbleLow(Int_t Narr, Double_t *arr1, Int_t *arr2)
Opposite ordering of the array arr2[] to that of BubbleHigh.
 
Double_t BesselK(Int_t n, Double_t x)
Integer order modified Bessel function I_n(x)
 
Double_t BesselJ1(Double_t x)
Bessel function J0(x) for any real x.
 
Double_t BetaIncomplete(Double_t x, Double_t a, Double_t b)
Calculates the incomplete Beta-function.
 
Double_t StruveH1(Double_t x)
Struve functions of order 0.
 
Double_t Freq(Double_t x)
Computation of the normal frequency function freq(x).
 
Double_t LandauI(Double_t x)
Returns the value of the Landau distribution function at point x.
 
Double_t ATanH(Double_t)
Returns the area hyperbolic tangent of x.
 
Double_t BesselI0(Double_t x)
Integer order modified Bessel function K_n(x)
 
void VavilovSet(Double_t rkappa, Double_t beta2, Bool_t mode, Double_t *WCM, Double_t *AC, Double_t *HC, Int_t &itype, Int_t &npt)
Internal function, called by Vavilov and VavilovI.
 
Double_t Log10(Double_t x)
Returns the common (base-10) logarithm of x.
 
Double_t StudentI(Double_t T, Double_t ndf)
Calculates the cumulative distribution function of Student's t-distribution second parameter stands f...
 
Double_t StudentQuantile(Double_t p, Double_t ndf, Bool_t lower_tail=kTRUE)
Computes quantiles of the Student's t-distribution 1st argument is the probability,...
 
Double_t BesselY1(Double_t x)
Bessel function Y0(x) for positive x.
 
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
 
Double_t GammaDist(Double_t x, Double_t gamma, Double_t mu=0, Double_t beta=1)
Computes the density function of Gamma distribution at point x.
 
constexpr Double_t HC()
in
 
Double_t ErfcInverse(Double_t x)
Returns the inverse of the complementary error function.
 
Bool_t Even(Long_t a)
Returns true if a is even.
 
static T Epsilon()
Returns minimum double representation.
 
static uint64_t sum(uint64_t i)