88#include "RConfigure.h"
119 double likelihood = std::exp(-nll);
121 if (
fPrior) likelihood *= (*fPrior)(
x);
124 if (nCalls > 0 && nCalls % 1000 == 0) {
125 ooccoutD(
nullptr,Eval) <<
"Likelihood evaluation ncalls = " << nCalls
126 <<
" x0 " <<
x[0] <<
" nll = " << nll+
fOffset;
128 ooccoutD(
nullptr,Eval) <<
" likelihood " << likelihood
129 <<
" max Likelihood " <<
fMaxL << std::endl;
132 if (likelihood >
fMaxL ) {
134 if ( likelihood > 1.E10) {
135 ooccoutW(
nullptr,Eval) <<
"LikelihoodFunction::() WARNING - Huge likelihood value found for parameters ";
137 ooccoutW(
nullptr,Eval) <<
" x[" << i <<
" ] = " <<
x[i];
138 ooccoutW(
nullptr,Eval) <<
" nll = " << nll <<
" L = " << likelihood << std::endl;
150 return (*
this)(&tmp);
173 fXmin(bindParams.getSize() ),
174 fXmax(bindParams.getSize() ),
186 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorCdfFunction::Compute integral of posterior in nuisance and poi. "
187 <<
" nllMinimum is " << nllMinimum << std::endl;
189 std::vector<double> par(bindParams.
getSize());
190 for (
unsigned int i = 0; i <
fXmin.size(); ++i) {
195 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorFunction::Integrate" << var.
GetName()
196 <<
" in interval [ " <<
fXmin[i] <<
" , " <<
fXmax[i] <<
" ] " << std::endl;
206 if (
fError)
ooccoutE(
nullptr,NumIntegration) <<
"PosteriorFunction::Error computing normalization - norm = " <<
fNorm << std::endl;
247 ooccoutD(
nullptr,NumIntegration) <<
" cloning function .........." << std::endl;
276 fXmin[0] = itr->first;
277 normcdf0 = itr->second;
287 double normcdf = cdf/
fNorm;
289 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorCdfFunction: poi = [" <<
fXmin[0] <<
" , "
290 <<
fXmax[0] <<
"] integral = " << cdf <<
" +/- " << error
291 <<
" norm-integ = " << normcdf <<
" cdf(x) = " << normcdf+normcdf0
294 if (
TMath::IsNaN(cdf) || cdf > std::numeric_limits<double>::max()) {
295 ooccoutE(
nullptr,NumIntegration) <<
"PosteriorFunction::Error computing integral - cdf = "
300 if (cdf != 0 && error/cdf > 0.2 )
301 oocoutW(
nullptr,NumIntegration) <<
"PosteriorCdfFunction: integration error is larger than 20 % x0 = " <<
fXmin[0]
302 <<
" x = " <<
x <<
" cdf(x) = " << cdf <<
" +/- " << error << std::endl;
305 oocoutI(
nullptr,NumIntegration) <<
"PosteriorCdfFunction - integral of posterior = "
306 << cdf <<
" +/- " << error << std::endl;
319 if (normcdf > 1. + 3 * errnorm) {
320 oocoutW(
nullptr,NumIntegration) <<
"PosteriorCdfFunction: normalized cdf values is larger than 1"
321 <<
" x = " <<
x <<
" normcdf(x) = " << normcdf <<
" +/- " << error/
fNorm << std::endl;
354 norm = 1.0,
double nllOffset = 0,
int niter = 0) :
359 fXmin(nuisParams.getSize() ),
360 fXmax(nuisParams.getSize() ),
370 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorFunction::Evaluate the posterior function by integrating the nuisances: " << std::endl;
371 for (
unsigned int i = 0; i <
fXmin.size(); ++i) {
375 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorFunction::Integrate " << var.
GetName()
376 <<
" in interval [" <<
fXmin[i] <<
" , " <<
fXmax[i] <<
" ] " << std::endl;
378 if (
fXmin.size() == 1) {
386 else if (
fXmin.size() > 1) {
419 if (
fXmin.size() == 1) {
423 else if (
fXmin.size() > 1) {
432 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorFunction: POI value = "
433 <<
x <<
"\tf(x) = " <<
f <<
" +/- " << error
434 <<
" norm-f(x) = " <<
f/
fNorm
440 if (
f != 0 && error/
f > 0.2 )
441 ooccoutW(
nullptr,NumIntegration) <<
"PosteriorFunction::DoEval - Error from integration in "
442 <<
fXmin.size() <<
" Dim is larger than 20 % "
443 <<
"x = " <<
x <<
" p(x) = " <<
f <<
" +/- " << error << std::endl;
470 nllOffset = 0,
int niter = 0,
bool redoToys =
true ) :
488 ooccoutI(
nullptr,InputArguments) <<
"PosteriorFunctionFromToyMC::Evaluate the posterior function by randomizing the nuisances: niter " <<
fNumIterations << std::endl;
490 ooccoutI(
nullptr,InputArguments) <<
"PosteriorFunctionFromToyMC::Pdf used for randomizing the nuisance is " <<
fPdf->
GetName() << std::endl;
496 <<
" is not part of sampling pdf. "
497 <<
"they will be treated as constant " << std::endl;
502 ooccoutI(
nullptr,InputArguments) <<
"PosteriorFunctionFromToyMC::Generate nuisance toys only one time (for all POI points)" << std::endl;
511 ooccoutE(
nullptr,InputArguments) <<
"PosteriorFunctionFromToyMC - failed to generate nuisance parameters" << std::endl;
548 std::vector<double>
p(npar);
549 for (
int i = 0; i < npar; ++i) {
553 assert(var !=
nullptr);
569 if( fval > std::numeric_limits<double>::max() ) {
570 ooccoutE(
nullptr,Eval) <<
"BayesianCalculator::EvalPosteriorFunctionFromToy : "
571 <<
"Likelihood evaluates to infinity " << std::endl;
572 ooccoutE(
nullptr,Eval) <<
"poi value = " <<
x << std::endl;
573 ooccoutE(
nullptr,Eval) <<
"Nuisance parameter values : ";
574 for (
int i = 0; i < npar; ++i)
576 ooccoutE(
nullptr,Eval) <<
" - return 0 " << std::endl;
582 ooccoutE(
nullptr,Eval) <<
"BayesianCalculator::EvalPosteriorFunctionFromToy : "
583 <<
"Likelihood is a NaN " << std::endl;
584 ooccoutE(
nullptr,Eval) <<
"poi value = " <<
x << std::endl;
585 ooccoutE(
nullptr,Eval) <<
"Nuisance parameter values : ";
586 for (
int i = 0; i < npar; ++i)
588 ooccoutE(
nullptr,Eval) <<
" - return 0 " << std::endl;
601 double dval2 = std::max( sum2/
double(
fNumIterations) - val*val, 0.0);
605 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorFunctionFromToyMC: POI value = "
606 <<
x <<
"\tp(x) = " << val <<
" +/- " <<
fError << std::endl;
609 if (val != 0 &&
fError/val > 0.2 ) {
610 ooccoutW(
nullptr,NumIntegration) <<
"PosteriorFunctionFromToyMC::DoEval"
611 <<
" - Error in estimating posterior is larger than 20% ! "
612 <<
"x = " <<
x <<
" p(x) = " << val <<
" +/- " <<
fError << std::endl;
643 fNuisancePdf(nullptr),
644 fProductPdf (nullptr), fLikelihood (nullptr), fIntegratedLikelihood (nullptr), fPosteriorPdf(nullptr),
645 fPosteriorFunction(nullptr), fApproxPosterior(nullptr),
646 fLower(0), fUpper(0),
648 fSize(0.05), fLeftSideFraction(0.5),
649 fBrfPrecision(0.00005),
652 fValidInterval(false)
670 fPriorPdf(&priorPdf),
671 fNuisancePdf(nullptr),
672 fProductPdf (nullptr), fLikelihood (nullptr), fIntegratedLikelihood (nullptr), fPosteriorPdf(nullptr),
673 fPosteriorFunction(nullptr), fApproxPosterior(nullptr),
674 fLower(0), fUpper(0),
676 fSize(0.05), fLeftSideFraction(0.5),
677 fBrfPrecision(0.00005),
680 fValidInterval(false)
695 fPdf(model.GetPdf()),
696 fPriorPdf( model.GetPriorPdf()),
697 fNuisancePdf(nullptr),
698 fProductPdf (nullptr), fLikelihood (nullptr), fIntegratedLikelihood (nullptr), fPosteriorPdf(nullptr),
699 fPosteriorFunction(nullptr), fApproxPosterior(nullptr),
700 fLower(0), fUpper(0),
702 fSize(0.05), fLeftSideFraction(0.5),
703 fBrfPrecision(0.00005),
706 fValidInterval(false)
784 coutE(InputArguments) <<
"BayesianCalculator::GetPosteriorPdf - missing pdf model" << std::endl;
788 coutE(InputArguments) <<
"BayesianCalculator::GetPosteriorPdf - missing parameter of interest" << std::endl;
792 coutE(InputArguments) <<
"BayesianCalculator::GetPosteriorPdf - current implementation works only on 1D intervals" << std::endl;
808 ccoutD(Eval) <<
"BayesianCalculator::GetPosteriorFunction : "
810 <<
" neglogLikelihood = " <<
fLogLike->getVal() << std::endl;
817 if ( nllVal > std::numeric_limits<double>::max() ) {
818 coutE(Eval) <<
"BayesianCalculator::GetPosteriorFunction : "
819 <<
" Negative log likelihood evaluates to infinity " << std::endl
820 <<
" Non-const Parameter values : ";
822 for (
int i = 0; i <
p.getSize(); ++i) {
824 if (
v!=
nullptr)
ccoutE(Eval) <<
v->
GetName() <<
" = " <<
v->getVal() <<
" ";
826 ccoutE(Eval) << std::endl;
827 ccoutE(Eval) <<
"-- Perform a full likelihood fit of the model before or set more reasonable parameter values"
829 coutE(Eval) <<
"BayesianCalculator::GetPosteriorFunction : " <<
" cannot compute posterior function " << std::endl;
849 coutI(Eval) <<
"BayesianCalculator::GetPosteriorFunction : "
850 <<
" nll value " << nllVal <<
" poi value = " << poi->
getVal() << std::endl;
855 bool ret = minim.
Minimize(100,1.E-3,1.E-3);
859 coutI(Eval) <<
"BayesianCalculator::GetPosteriorFunction : minimum of NLL vs POI for POI = "
867 ccoutD(Eval) <<
"BayesianCalculator::GetPosteriorFunction : use ROOFIT integration "
924 bool doToysEveryIteration =
true;
930 ccoutI(Eval) <<
"BayesianCalculator::GetPosteriorFunction : no nuisance pdf is provided, try using global pdf (this will be slower)"
960 coutW(Eval) <<
"BayesianCalculator::GetPosteriorFunction : " <<
RooAbsReal::numEvalErrors() <<
" errors reported in evaluating log-likelihood function "
978 if (!plike)
return nullptr;
1024 if (!posterior)
return nullptr;
1033 if (!
plot)
return nullptr;
1041 plot->GetYaxis()->SetTitle(
"posterior function");
1106 coutW(Eval) <<
"BayesianCalculator::GetInterval - recomputing interval for the same CL and same model" << std::endl;
1110 coutE(Eval) <<
"BayesianCalculator::GetInterval - no parameter of interest is set " << std::endl;
1149 coutW(Eval) <<
"BayesianCalculator::GetInterval - computing integral from cdf failed - do a scan in "
1167 coutE(Eval) <<
"BayesianCalculator::GetInterval - cannot compute a valid interval - return a dummy [1,0] interval"
1171 coutI(Eval) <<
"BayesianCalculator::GetInterval - found a valid interval : [" <<
fLower <<
" , "
1172 <<
fUpper <<
" ]" << std::endl;
1177 interval->
SetTitle(
"SimpleInterval from BayesianCalculator");
1202 coutI(Eval) <<
"BayesianCalculator: Compute interval using RooFit: posteriorPdf + createCdf + RooBrentRootFinder " << std::endl;
1214 std::unique_ptr<RooAbsFunc> cdf_bind{cdf->bindVars(
fPOI,&
fPOI)};
1215 if (!cdf_bind)
return;
1220 double tmpVal = poi->
getVal();
1223 if (lowerCutOff > 0) {
1224 double y = lowerCutOff;
1230 if (upperCutOff < 1.0) {
1231 double y=upperCutOff;
1236 if (!ret)
coutE(Eval) <<
"BayesianCalculator::GetInterval "
1237 <<
"Error returned from Root finder, estimated interval is not fully correct"
1253 coutI(InputArguments) <<
"BayesianCalculator:GetInterval Compute the interval from the posterior cdf " << std::endl;
1258 coutE(InputArguments) <<
"BayesianCalculator::GetInterval() cannot make posterior Function " << std::endl;
1273 coutE(Eval) <<
"BayesianCalculator: Numerical error computing CDF integral - try a different method " << std::endl;
1281 ccoutD(Eval) <<
"BayesianCalculator::GetInterval - finding roots of posterior using RF " << rf.
Name()
1284 if (lowerCutOff > 0) {
1286 ccoutD(NumIntegration) <<
"Integrating posterior to get cdf and search lower limit at p =" << lowerCutOff << std::endl;
1289 coutW(Eval) <<
"BayesianCalculator: Numerical error integrating the CDF " << std::endl;
1291 coutE(NumIntegration) <<
"BayesianCalculator::GetInterval - Error from root finder when searching lower limit !" << std::endl;
1299 if (upperCutOff < 1.0) {
1301 ccoutD(NumIntegration) <<
"Integrating posterior to get cdf and search upper interval limit at p =" << upperCutOff << std::endl;
1304 coutW(Eval) <<
"BayesianCalculator: Numerical error integrating the CDF " << std::endl;
1306 coutE(NumIntegration) <<
"BayesianCalculator::GetInterval - Error from root finder when searching upper limit !" << std::endl;
1337 if (!posterior)
return;
1341 assert(tmp !=
nullptr);
1345 coutI(Eval) <<
"BayesianCalculator - scan posterior function in nbins = " << tmp->
GetNpx() << std::endl;
1372 ccoutD(Eval) <<
"BayesianCalculator: Compute interval from the approximate posterior " << std::endl;
1378 double limits[2] = {0,0};
1379 prob[0] = lowerCutOff;
1380 prob[1] = upperCutOff;
1392 coutI(Eval) <<
"BayesianCalculator - computing shortest interval with CL = " << 1.-
fSize << std::endl;
1399 assert(
h1 !=
nullptr);
1405 std::vector<int>
index(
n);
1410 double actualCL = 0;
1415 for (
int i = 0; i <
n; ++i) {
1417 double p = bins[ idx] / norm;
1431 ccoutD(Eval) <<
"BayesianCalculator::ComputeShortestInterval - actual interval CL = "
1432 << actualCL <<
" difference from requested is " << (actualCL-(1.-
fSize))/
fSize*100. <<
"% "
1433 <<
" limits are [ " << lower <<
" , " <<
" upper ] " << std::endl;
1436 if (lower < upper) {
1442 if ( std::abs(actualCL-(1.-
fSize)) > 0.1*(1.-
fSize) )
1443 coutW(Eval) <<
"BayesianCalculator::ComputeShortestInterval - actual interval CL = "
1444 << actualCL <<
" differs more than 10% from desired CL value - must increase nbins "
1445 <<
n <<
" to an higher value " << std::endl;
1448 coutE(Eval) <<
"BayesianCalculator::ComputeShortestInterval " <<
n <<
" bins are not sufficient " << std::endl;
winID h TVirtualViewer3D TVirtualGLPainter p
winID h TVirtualViewer3D TVirtualGLPainter char TVirtualGLPainter plot
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h offset
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
User class for performing function minimization.
void SetFunction(const ROOT::Math::IGenFunction &f, double xlow, double xup)
Sets function to be minimized.
bool Minimize(int maxIter, double absTol=1.E-8, double relTol=1.E-10) override
Find minimum position iterating until convergence specified by the absolute and relative tolerance or...
double FValMinimum() const override
Return function value at current estimate of the minimum.
Functor1D class for one-dimensional functions.
Interface (abstract class) for generic functions objects of one-dimension Provides a method to evalua...
Numerical multi dimensional integration options.
void Print(std::ostream &os=std::cout) const
print all the options
void SetNCalls(unsigned int calls)
set maximum number of function calls
User class for performing multidimensional integration.
double Integral(const double *xmin, const double *xmax)
evaluate the integral with the previously given function between xmin[] and xmax[]
void SetFunction(Function &f, unsigned int dim)
set integration function using a generic function implementing the operator()(double *x) The dimensio...
static IntegrationMultiDim::Type GetType(const char *name)
static function to get the enumeration from a string
ROOT::Math::IntegratorMultiDimOptions Options() const
retrieve the options
double Error() const
return integration error
static IntegrationOneDim::Type GetType(const char *name)
static function to get the enumeration from a string
User Class to find the Root of one dimensional functions.
const char * Name() const
Return the current and latest estimate of the lower value of the Root-finding interval (for bracketin...
bool Solve(Function &f, Derivative &d, double start, int maxIter=100, double absTol=1E-8, double relTol=1E-10)
Solve f(x) = 0, given a derivative d.
double Root() const
Return the current and latest estimate of the Root.
Common abstract base class for objects that represent a value and a "shape" in RooFit.
RooFit::OwningPtr< RooArgSet > getParameters(const RooAbsData *data, bool stripDisconnected=true) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
RooFit::OwningPtr< RooArgSet > getVariables(bool stripDisconnected=true) const
Return RooArgSet with all variables (tree leaf nodes of expression tree)
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
Storage_t const & get() const
Const access to the underlying stl container.
Int_t getSize() const
Return the number of elements in the collection.
const char * GetName() const override
Returns name of object.
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
RooAbsArg * first() const
RooAbsArg * find(const char *name) const
Find object with given name in list.
Abstract base class for binned and unbinned datasets.
void resetNumCall() const
Reset function call counter.
Int_t numCall() const
Return number of function calls since last reset.
Abstract interface for all probability density functions.
RooFit::OwningPtr< RooAbsReal > createNLL(RooAbsData &data, CmdArgs_t const &... cmdArgs)
Construct representation of -log(L) of PDF with given dataset.
RooFit::OwningPtr< RooAbsReal > createCdf(const RooArgSet &iset, const RooArgSet &nset=RooArgSet())
Create a cumulative distribution function of this p.d.f in terms of the observables listed in iset.
RooFit::OwningPtr< RooDataSet > generate(const RooArgSet &whatVars, Int_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={})
See RooAbsPdf::generate(const RooArgSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,...
RooAbsRealLValue is the common abstract base class for objects that represent a real value that may a...
virtual double getMax(const char *name=nullptr) const
Get maximum of currently defined range.
virtual double getMin(const char *name=nullptr) const
Get minimum of currently defined range.
RooPlot * frame(const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}) const
Create a new RooPlot on the heap with a drawing frame initialized for this object,...
Abstract base class for objects that represent a real value and implements functionality common to al...
RooFit::OwningPtr< RooAbsReal > createIntegral(const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}) const
Create an object that represents the integral of the function over one or more observables listed in ...
double getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
TF1 * asTF(const RooArgList &obs, const RooArgList &pars=RooArgList(), const RooArgSet &nset=RooArgSet()) const
Return a ROOT TF1,2,3 object bound to this RooAbsReal with given definition of observables and parame...
static Int_t numEvalErrors()
Return the number of logged evaluation errors since the last clearing.
static void setEvalErrorLoggingMode(ErrorLoggingMode m)
Set evaluation error logging mode.
static void clearEvalErrorLog()
Clear the stack of evaluation error messages.
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1={}, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}, const RooCmdArg &arg9={}, const RooCmdArg &arg10={}) const
Plot (project) PDF on specified frame.
RooArgList is a container object that can hold multiple RooAbsArg objects.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Implement the abstract 1-dimensional root finding interface using the Brent-Decker method.
bool findRoot(double &result, double xlo, double xhi, double value=0) const
Do the root finding using the Brent-Decker method.
void setTol(double tol)
Set convergence tolerance parameter.
RooCFunction1Binding is a templated implementation of class RooAbsReal that binds generic C(++) funct...
Lightweight interface adaptor that exports a RooAbsPdf as a functor.
RooGenericPdf is a concrete implementation of a probability density function, which takes a RooArgLis...
A RooPlot is a plot frame and a container for graphics objects within that frame.
Efficient implementation of a product of PDFs of the form.
RooRealVar represents a variable that can be changed from the outside.
void setVal(double value) override
Set value of variable to 'value'.
BayesianCalculator is a concrete implementation of IntervalCalculator, providing the computation of a...
ROOT::Math::IGenFunction * fPosteriorFunction
function representing the posterior
RooAbsReal * fLikelihood
internal pointer to likelihood function
double fNLLMin
minimum value of Nll
int fNumIterations
number of iterations (when using ToyMC)
RooAbsPdf * GetPosteriorPdf() const
return posterior pdf (object is managed by the user)
RooAbsData * fData
data set
RooPlot * GetPosteriorPlot(bool norm=false, double precision=0.01) const
get the plot with option to get it normalized
int fNScanBins
number of bins to scan, if = -1 no scan is done (default)
void ClearAll() const
clear all cached pdf objects
void ComputeShortestInterval() const
compute the shortest interval from the histogram representing the posterior
RooAbsPdf * fNuisancePdf
nuisance pdf (needed when using nuisance sampling technique)
RooArgSet fConditionalObs
conditional observables
double fBrfPrecision
root finder precision
RooAbsReal * fIntegratedLikelihood
integrated likelihood function, i.e - unnormalized posterior function
void ApproximatePosterior() const
approximate posterior in nbins using a TF1 scan the poi values and evaluate the posterior at each poi...
double fSize
size used for getting the interval
RooArgSet fNuisanceParameters
nuisance parameters
double fLeftSideFraction
fraction of probability content on left side of interval
RooArgSet fGlobalObs
global observables
double GetMode() const
return the mode (most probable value of the posterior function)
RooAbsPdf * fPdf
model pdf (could contain the nuisance pdf as constraint term)
SimpleInterval * GetInterval() const override
compute the interval.
RooAbsPdf * fProductPdf
internal pointer to model * prior
TF1 * fApproxPosterior
TF1 representing the scanned posterior function.
RooAbsReal * GetPosteriorFunction() const
return posterior function (object is managed by the BayesianCalculator class)
void SetIntegrationType(const char *type)
set the integration type (possible type are) :
RooAbsPdf * fPosteriorPdf
normalized (on the poi) posterior pdf
double fUpper
upper interval bound
double fLower
computer lower interval bound
TH1 * GetPosteriorHistogram() const
return the approximate posterior as histogram (TH1 object). Note the object is managed by the Bayesia...
void ComputeIntervalFromApproxPosterior(double c1, double c2) const
compute the interval using the approximate posterior function
BayesianCalculator()
constructor
void SetModel(const ModelConfig &model) override
set the model via the ModelConfig
RooAbsPdf * fPriorPdf
prior pdf (typically for the POI)
std::unique_ptr< RooAbsReal > fLogLike
internal pointer to log likelihood function
double ConfidenceLevel() const override
Get the Confidence level for the test.
~BayesianCalculator() override
destructor
void ComputeIntervalUsingRooFit(double c1, double c2) const
internal function compute the interval using RooFit
void ComputeIntervalFromCdf(double c1, double c2) const
internal function compute the interval using Cdf integration
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
const RooArgSet * GetConditionalObservables() const
get RooArgSet for conditional observables (return nullptr if not existing)
const RooArgSet * GetGlobalObservables() const
get RooArgSet for global observables (return nullptr if not existing)
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return nullptr if not existing)
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return nullptr if not existing)
RooAbsPdf * GetPdf() const
get model PDF (return nullptr if pdf has not been specified or does not exist)
RooAbsPdf * GetPriorPdf() const
get parameters prior pdf (return nullptr if not existing)
std::shared_ptr< RooFunctor > fPriorFunc
PosteriorCdfFunction & operator=(const PosteriorCdfFunction &)
void SetOffset(double offset)
PosteriorCdfFunction(const PosteriorCdfFunction &rhs)
std::vector< double > fXmax
ROOT::Math::IntegratorMultiDim fIntegrator
PosteriorCdfFunction(RooAbsReal &nll, RooArgList &bindParams, RooAbsReal *prior=nullptr, const char *integType=nullptr, double nllMinimum=0)
double DoEval(double x) const override
implementation of the evaluation function. Must be implemented by derived classes
std::map< double, double > fNormCdfValues
std::vector< double > fXmin
ROOT::Math::IGenFunction * Clone() const override
Clone a function.
LikelihoodFunction fLikelihood
Posterior function obtaining sampling toy MC for the nuisance according to their pdf.
void GenerateToys() const
LikelihoodFunction fLikelihood
std::shared_ptr< RooFunctor > fPriorFunc
std::unique_ptr< RooDataSet > fGenParams
double DoEval(double x) const override
implementation of the evaluation function. Must be implemented by derived classes
PosteriorFunctionFromToyMC(RooAbsReal &nll, RooAbsPdf &pdf, RooRealVar &poi, RooArgList &nuisParams, RooAbsReal *prior=nullptr, double nllOffset=0, int niter=0, bool redoToys=true)
ROOT::Math::IGenFunction * Clone() const override
Clone a function.
LikelihoodFunction fLikelihood
PosteriorFunction(RooAbsReal &nll, RooRealVar &poi, RooArgList &nuisParams, RooAbsReal *prior=nullptr, const char *integType=nullptr, double norm=1.0, double nllOffset=0, int niter=0)
std::shared_ptr< RooFunctor > fPriorFunc
std::unique_ptr< ROOT::Math::IntegratorMultiDim > fIntegratorMultiDim
ROOT::Math::IGenFunction * Clone() const override
Clone a function.
std::vector< double > fXmin
std::vector< double > fXmax
double DoEval(double x) const override
implementation of the evaluation function. Must be implemented by derived classes
std::unique_ptr< ROOT::Math::Integrator > fIntegratorOneDim
SimpleInterval is a concrete implementation of the ConfInterval interface.
Use TF1, TF2, TF3 functions as RooFit objects.
const Float_t * GetArray() const
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function Note that this histogram is managed ...
virtual void SetNpx(Int_t npx=100)
Set the number of points used to draw the function.
virtual Int_t GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum)
Compute Quantiles for density distribution of this function.
TObject * Clone(const char *newname=nullptr) const override
Make a complete copy of the underlying object.
virtual Int_t GetNpx() const
1-D histogram with a double per channel (see TH1 documentation)}
TH1 is the base class of all histogram classes in ROOT.
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
void SetName(const char *name) override
Change the name of this histogram.
virtual Double_t GetSumOfWeights() const
Return the sum of weights excluding under/overflows.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
const char * GetName() const override
Returns name of object.
const char * GetTitle() const override
Returns title of object.
void ToUpper()
Change string to upper case.
void Form(const char *fmt,...)
Formats a string using a printf style format descriptor.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
RooCmdArg Constrain(const RooArgSet ¶ms)
RooCmdArg GlobalObservables(Args_t &&... argsOrArgSet)
RooCmdArg ConditionalObservables(Args_t &&... argsOrArgSet)
Create a RooCmdArg to declare conditional observables.
RooCmdArg FillColor(Color_t color)
RooCmdArg Precision(double prec)
RooCmdArg DrawOption(const char *opt)
RooCmdArg Range(const char *rangeName, bool adjustNorm=true)
Namespace for new Math classes and functions.
This file contains a specialised ROOT message handler to test for diagnostic in unit tests.
Namespace for the RooStats classes.
void RemoveConstantParameters(RooArgSet *set)
const ROOT::Math::RootFinder::EType kRootFinderType
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Sort the n elements of the array a of generic templated type Element.
void SetPrior(RooFunctor *prior)
LikelihoodFunction(RooFunctor &f, RooFunctor *prior=nullptr, double offset=0)
double operator()(const double *x) const
static uint64_t sum(uint64_t i)