This tutorial requires FFT3 to be enabled.
 
[#1] INFO:Eval -- RooRealVar::setRange(mean) new range named 'refrange_fft_model' created with bounds [-3,3]
[#0] WARNING:Eval -- The FFT convolution 'model' will run with 50 bins. A decent accuracy for difficult convolutions is typically only reached with n >= 1000. Suggest to increase the number of bins of the observable 'mean'.
[#1] INFO:NumericIntegration -- RooRealIntegral::init(gx_Int[mean,x]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(model_mean_Int[mean]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(model) creating new cache 0x55697892b680 with pdf gx_CONV_model_mean_CACHE_Obs[mean,x]_NORM_mean for nset (mean) with code 0
[#0] WARNING:Eval -- The FFT convolution 'model' will run with 50 bins. A decent accuracy for difficult convolutions is typically only reached with n >= 1000. Suggest to increase the number of bins of the observable 'mean'.
[#1] INFO:NumericIntegration -- RooRealIntegral::init(gx_Int[mean,x]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(model_mean_Int[mean]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(model) creating new cache 0x556978766570 with pdf gx_CONV_model_mean_CACHE_Obs[x,mean]_NORM_x_mean for nset (x,mean) with code 1
[#0] WARNING:Eval -- The FFT convolution 'model' will run with 50 bins. A decent accuracy for difficult convolutions is typically only reached with n >= 1000. Suggest to increase the number of bins of the observable 'mean'.
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(model) creating new cache 0x556979fdb620 with pdf gx_CONV_model_mean_CACHE_Obs[x,mean]_NORM_x_mean for nset (x,mean) with code 1 from preexisting content.
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#0] WARNING:Minimization -- RooAbsMinimizerFcn::synchronize: WARNING: no initial error estimate available for a: using 0.5
[#0] WARNING:Minimization -- RooAbsMinimizerFcn::synchronize: WARNING: no initial error estimate available for sigma: using 0.2
 
prevFCN = 2171.275755  a=2.012, sigma=0.5, [#1] INFO:NumericIntegration -- RooRealIntegral::init(gx_Int[mean,x]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(model_mean_Int[mean]) using numeric integrator RooIntegrator1D to calculate Int(mean)
 
prevFCN = 2171.275755  a=1.988, 
prevFCN = 2171.275755  a=2.121, 
prevFCN = 2171.861215  a=1.886, 
prevFCN = 2172.184717  a=2.012, 
prevFCN = 2171.275755  a=1.988, 
prevFCN = 2171.275755  a=2, sigma=0.5047, 
prevFCN = 2171.286528  sigma=0.4953, 
prevFCN = 2171.267762  sigma=0.5029, 
prevFCN = 2171.281998  sigma=0.4971, 
prevFCN = 2171.270547  a=2.012, sigma=0.5, 
prevFCN = 2171.275755  a=2.012, 
prevFCN = 2171.275755  a=2.012, 
prevFCN = 2171.275755  a=2.012, 
prevFCN = 2171.275755  a=2.012, 
prevFCN = 2171.275755  a=2.012, 
prevFCN = 2171.275755  a=2.012, 
prevFCN = 2171.275755  a=2.012, 
prevFCN = 2171.275755  a=2.012, 
prevFCN = 2171.275755  a=2.012, 
prevFCN = 2171.275755  a=2.012, 
prevFCN = 2171.275755  a=2.121, 
prevFCN = 2171.861215  a=1.886, 
prevFCN = 2172.184717  a=2.012, 
prevFCN = 2171.275755  a=1.988, 
prevFCN = 2171.275755  a=2.121, 
prevFCN = 2171.861215  a=1.886, 
prevFCN = 2172.184717  a=2, sigma=0.5029, 
prevFCN = 2171.281998  sigma=0.4971, 
prevFCN = 2171.270547  a=2.013, sigma=0.4843, 
prevFCN = 2171.259881  a=2.009, sigma=0.4884, 
prevFCN = 2171.260992  a=2.025, sigma=0.4843, 
prevFCN = 2171.259881  a=2.001, 
prevFCN = 2171.259881  a=2.134, 
prevFCN = 2171.692149  a=1.898, 
prevFCN = 2172.378568  a=2.025, 
prevFCN = 2171.259881  a=2.001, 
prevFCN = 2171.259881  a=2.013, sigma=0.4871, 
prevFCN = 2171.26042  sigma=0.4815, 
prevFCN = 2171.260367  sigma=0.4843, 
prevFCN = 2171.259881  a=2.025, 
prevFCN = 2171.259881  a=2.001, 
prevFCN = 2171.259881  a=2.134, 
prevFCN = 2171.692149  a=1.898, 
prevFCN = 2172.378568  a=2.013, sigma=0.4871, 
prevFCN = 2171.26042  sigma=0.4815, 
prevFCN = 2171.260367  a=2.015, sigma=0.4843, 
prevFCN = 2171.259881  a=2.011, 
prevFCN = 2171.259881  a=2.013, sigma=0.4848, 
prevFCN = 2171.259907  sigma=0.4837, 
prevFCN = 2171.259896  a=2.134, sigma=0.4871, 
prevFCN = 2171.720718  a=2.065, sigma=0.4512, 
prevFCN = 2171.332894  a=2.03, sigma=0.473, 
prevFCN = 2171.26812  a=2.02, sigma=0.4794, 
prevFCN = 2171.261381  a=2.016, sigma=0.482, 
prevFCN = 2171.260198  a=2.014, sigma=0.4832, 
prevFCN = 2171.25995  a=2.014, sigma=0.4837, 
prevFCN = 2171.259895  a=2.013, sigma=0.484, 
prevFCN = 2171.259883  a=2.013, sigma=0.4841, 
prevFCN = 2171.259881  a=2.013, sigma=0.4842, 
prevFCN = 2171.25988  a=2.025, 
prevFCN = 2171.25988  a=2.001, 
prevFCN = 2171.25988  a=2.134, 
prevFCN = 2171.691427  a=1.898, 
prevFCN = 2172.379556  a=2.025, 
prevFCN = 2171.25988  a=2.001, 
prevFCN = 2171.25988  a=2.013, sigma=0.487, 
prevFCN = 2171.260398  sigma=0.4814, 
prevFCN = 2171.260398  sigma=0.4842, 
prevFCN = 2171.25988  a=2.025, 
prevFCN = 2171.25988  a=2.001, 
prevFCN = 2171.25988  a=2.134, 
prevFCN = 2171.691427  a=1.898, 
prevFCN = 2172.379556  a=2.013, sigma=0.487, 
prevFCN = 2171.260398  sigma=0.4814, 
prevFCN = 2171.260398  a=2.015, sigma=0.4842, 
prevFCN = 2171.25988  a=2.011, 
prevFCN = 2171.25988  a=2.013, sigma=0.4848, 
prevFCN = 2171.259901  sigma=0.4836, 
prevFCN = 2171.259901  sigma=0.4843, 
prevFCN = 2171.259881  sigma=0.4841, 
prevFCN = 2171.259881  a=2.134, sigma=0.487, 
prevFCN = 2171.720107  a=2.013, sigma=0.4842, [#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#0] WARNING:Eval -- The FFT convolution 'model' will run with 50 bins. A decent accuracy for difficult convolutions is typically only reached with n >= 1000. Suggest to increase the number of bins of the observable 'mean'.
[#1] INFO:NumericIntegration -- RooRealIntegral::init(gx_Int[mean,x]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(model_mean_Int[mean]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(model) creating new cache 0x556979fdbb60 with pdf gx_CONV_model_mean_CACHE_Obs[x,mean]_NORM_x_mean for nset (x,mean) with code 1
[#0] WARNING:Eval -- The FFT convolution 'model' will run with 50 bins. A decent accuracy for difficult convolutions is typically only reached with n >= 1000. Suggest to increase the number of bins of the observable 'mean'.
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(model) creating new cache 0x556979fdbb60 with pdf gx_CONV_model_mean_CACHE_Obs[x,mean]_NORM_x for nset (x) with code 1 from preexisting content.