==> Start TMVAMulticlass
--- TMVAMulticlass: Using input file: ./files/tmva_multiclass_example.root
DataSetInfo              : [dataset] : Added class "Signal"
                         : Add Tree TreeS of type Signal with 2000 events
DataSetInfo              : [dataset] : Added class "bg0"
                         : Add Tree TreeB0 of type bg0 with 2000 events
DataSetInfo              : [dataset] : Added class "bg1"
                         : Add Tree TreeB1 of type bg1 with 2000 events
DataSetInfo              : [dataset] : Added class "bg2"
                         : Add Tree TreeB2 of type bg2 with 2000 events
                         : Dataset[dataset] : Class index : 0  name : Signal
                         : Dataset[dataset] : Class index : 1  name : bg0
                         : Dataset[dataset] : Class index : 2  name : bg1
                         : Dataset[dataset] : Class index : 3  name : bg2
Factory                  : Booking method: ␛[1mBDTG␛[0m
                         : 
                         : the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
                         : --> change to new default NegWeightTreatment=Pray
                         : Rebuilding Dataset dataset
                         : Building event vectors for type 2 Signal
                         : Dataset[dataset] :  create input formulas for tree TreeS
                         : Building event vectors for type 2 bg0
                         : Dataset[dataset] :  create input formulas for tree TreeB0
                         : Building event vectors for type 2 bg1
                         : Dataset[dataset] :  create input formulas for tree TreeB1
                         : Building event vectors for type 2 bg2
                         : Dataset[dataset] :  create input formulas for tree TreeB2
DataSetFactory           : [dataset] : Number of events in input trees
                         : 
                         : 
                         : 
                         : 
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal -- training events            : 1000
                         : Signal -- testing events             : 1000
                         : Signal -- training and testing events: 2000
                         : bg0    -- training events            : 1000
                         : bg0    -- testing events             : 1000
                         : bg0    -- training and testing events: 2000
                         : bg1    -- training events            : 1000
                         : bg1    -- testing events             : 1000
                         : bg1    -- training and testing events: 2000
                         : bg2    -- training events            : 1000
                         : bg2    -- testing events             : 1000
                         : bg2    -- training and testing events: 2000
                         : 
DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.397  +0.623  +0.832
                         :    var2:  +0.397  +1.000  +0.716  +0.737
                         :    var3:  +0.623  +0.716  +1.000  +0.859
                         :    var4:  +0.832  +0.737  +0.859  +1.000
                         : ----------------------------------------
DataSetInfo              : Correlation matrix (bg0):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.365  +0.592  +0.811
                         :    var2:  +0.365  +1.000  +0.708  +0.740
                         :    var3:  +0.592  +0.708  +1.000  +0.859
                         :    var4:  +0.811  +0.740  +0.859  +1.000
                         : ----------------------------------------
DataSetInfo              : Correlation matrix (bg1):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.407  +0.610  +0.834
                         :    var2:  +0.407  +1.000  +0.710  +0.741
                         :    var3:  +0.610  +0.710  +1.000  +0.851
                         :    var4:  +0.834  +0.741  +0.851  +1.000
                         : ----------------------------------------
DataSetInfo              : Correlation matrix (bg2):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  -0.647  -0.016  -0.013
                         :    var2:  -0.647  +1.000  +0.015  +0.002
                         :    var3:  -0.016  +0.015  +1.000  -0.024
                         :    var4:  -0.013  +0.002  -0.024  +1.000
                         : ----------------------------------------
DataSetFactory           : [dataset] :  
                         : 
Factory                  : Booking method: ␛[1mMLP␛[0m
                         : 
MLP                      : Building Network. 
                         : Initializing weights
Factory                  : Booking method: ␛[1mPDEFoam␛[0m
                         : 
Factory                  : Booking method: ␛[1mDL_CPU␛[0m
                         : 
                         : Parsing option string: 
                         : ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=N:WeightInitialization=XAVIERUNIFORM:Architecture=GPU:Layout=TANH|100,TANH|50,TANH|10,LINEAR:TrainingStrategy=Optimizer=ADAM,LearningRate=1e-3,TestRepetitions=1,ConvergenceSteps=10,BatchSize=100,MaxEpochs=20"
                         : The following options are set:
                         : - By User:
                         :     <none>
                         : - Default:
                         :     Boost_num: "0" [Number of times the classifier will be boosted]
                         : Parsing option string: 
                         : ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=N:WeightInitialization=XAVIERUNIFORM:Architecture=GPU:Layout=TANH|100,TANH|50,TANH|10,LINEAR:TrainingStrategy=Optimizer=ADAM,LearningRate=1e-3,TestRepetitions=1,ConvergenceSteps=10,BatchSize=100,MaxEpochs=20"
                         : The following options are set:
                         : - By User:
                         :     V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
                         :     VarTransform: "N" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
                         :     H: "False" [Print method-specific help message]
                         :     Layout: "TANH|100,TANH|50,TANH|10,LINEAR" [Layout of the network.]
                         :     ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
                         :     WeightInitialization: "XAVIERUNIFORM" [Weight initialization strategy]
                         :     Architecture: "GPU" [Which architecture to perform the training on.]
                         :     TrainingStrategy: "Optimizer=ADAM,LearningRate=1e-3,TestRepetitions=1,ConvergenceSteps=10,BatchSize=100,MaxEpochs=20" [Defines the training strategies.]
                         : - Default:
                         :     VerbosityLevel: "Default" [Verbosity level]
                         :     CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
                         :     IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
                         :     InputLayout: "0|0|0" [The Layout of the input]
                         :     BatchLayout: "0|0|0" [The Layout of the batch]
                         :     RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
                         :     ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
DL_CPU                   : [dataset] : Create Transformation "N" with events from all classes.
                         : 
                         : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
␛[31m<ERROR>                         : CUDA backend not enabled. Please make sure you have CUDA installed and it was successfully detected by CMAKE by using -Dtmva-gpu=On  ␛[0m
                         : Will now use instead the CPU architecture !
                         : Will now use the CPU architecture with BLAS and IMT support !
Factory                  : ␛[1mTrain all methods␛[0m
Factory                  : [dataset] : Create Transformation "I" with events from all classes.
                         : 
                         : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
Factory                  : [dataset] : Create Transformation "D" with events from all classes.
                         : 
                         : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
Factory                  : [dataset] : Create Transformation "P" with events from all classes.
                         : 
                         : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
Factory                  : [dataset] : Create Transformation "G" with events from all classes.
                         : 
                         : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
Factory                  : [dataset] : Create Transformation "D" with events from all classes.
                         : 
                         : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.047647     1.0025   [    -3.6592     3.2645 ]
                         :     var2:    0.32647     1.0646   [    -3.6891     3.7877 ]
                         :     var3:    0.11493     1.1230   [    -4.5727     4.5640 ]
                         :     var4:  -0.076531     1.2652   [    -4.8486     5.0412 ]
                         : -----------------------------------------------------------
                         : Preparing the Decorrelation transformation...
TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.082544     1.0000   [    -3.6274     3.1017 ]
                         :     var2:    0.36715     1.0000   [    -3.3020     3.4950 ]
                         :     var3:   0.066865     1.0000   [    -2.9882     3.3086 ]
                         :     var4:   -0.20593     1.0000   [    -3.3088     2.8423 ]
                         : -----------------------------------------------------------
                         : Preparing the Principle Component (PCA) transformation...
TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1: 5.7502e-10     1.8064   [    -8.0344     7.8312 ]
                         :     var2:-1.6078e-11    0.90130   [    -2.6765     2.7523 ]
                         :     var3: 3.0841e-10    0.73386   [    -2.6572     2.2255 ]
                         :     var4:-2.6886e-10    0.62168   [    -1.7384     2.2297 ]
                         : -----------------------------------------------------------
                         : Preparing the Gaussian transformation...
                         : Preparing the Decorrelation transformation...
TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.013510     1.0000   [    -2.6520     6.2074 ]
                         :     var2:  0.0096839     1.0000   [    -2.8402     6.3073 ]
                         :     var3:   0.010397     1.0000   [    -3.0251     5.8860 ]
                         :     var4:  0.0053980     1.0000   [    -3.0998     5.7078 ]
                         : -----------------------------------------------------------
                         : Ranking input variables (method unspecific)...
Factory                  : Train method: BDTG for Multiclass classification
                         : 
                         : Training 1000 Decision Trees ... patience please
                         : Elapsed time for training with 4000 events: 5.47 sec         
                         : Dataset[dataset] : Create results for training
                         : Dataset[dataset] : Multiclass evaluation of BDTG on training sample
                         : Dataset[dataset] : Elapsed time for evaluation of 4000 events: 1.65 sec       
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
                         : Creating xml weight file: ␛[0;36mdataset/weights/TMVAMulticlass_BDTG.weights.xml␛[0m
                         : Creating standalone class: ␛[0;36mdataset/weights/TMVAMulticlass_BDTG.class.C␛[0m
                         : TMVAMulticlass.root:/dataset/Method_BDT/BDTG
Factory                  : Training finished
                         : 
Factory                  : Train method: MLP for Multiclass classification
                         : 
                         : Training Network
                         : 
                         : Elapsed time for training with 4000 events: 24.1 sec         
                         : Dataset[dataset] : Create results for training
                         : Dataset[dataset] : Multiclass evaluation of MLP on training sample
                         : Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.0205 sec       
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
                         : Creating xml weight file: ␛[0;36mdataset/weights/TMVAMulticlass_MLP.weights.xml␛[0m
                         : Creating standalone class: ␛[0;36mdataset/weights/TMVAMulticlass_MLP.class.C␛[0m
                         : Write special histos to file: TMVAMulticlass.root:/dataset/Method_MLP/MLP
Factory                  : Training finished
                         : 
Factory                  : Train method: PDEFoam for Multiclass classification
                         : 
                         : Build up multiclass foam 0
                         : Elapsed time: 0.665 sec                                 
                         : Build up multiclass foam 1
                         : Elapsed time: 0.669 sec                                 
                         : Build up multiclass foam 2
                         : Elapsed time: 0.676 sec                                 
                         : Build up multiclass foam 3
                         : Elapsed time: 0.472 sec                                 
                         : Elapsed time for training with 4000 events: 2.65 sec         
                         : Dataset[dataset] : Create results for training
                         : Dataset[dataset] : Multiclass evaluation of PDEFoam on training sample
                         : Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.149 sec       
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
                         : Creating xml weight file: ␛[0;36mdataset/weights/TMVAMulticlass_PDEFoam.weights.xml␛[0m
                         : writing foam MultiClassFoam0 to file
                         : writing foam MultiClassFoam1 to file
                         : writing foam MultiClassFoam2 to file
                         : writing foam MultiClassFoam3 to file
                         : Foams written to file: ␛[0;36mdataset/weights/TMVAMulticlass_PDEFoam.weights_foams.root␛[0m
                         : Creating standalone class: ␛[0;36mdataset/weights/TMVAMulticlass_PDEFoam.class.C␛[0m
Factory                  : Training finished
                         : 
Factory                  : Train method: DL_CPU for Multiclass classification
                         : 
TFHandler_DL_CPU         : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.070769    0.28960   [    -1.0000     1.0000 ]
                         :     var2:   0.074130    0.28477   [    -1.0000     1.0000 ]
                         :     var3:   0.026106    0.24582   [    -1.0000     1.0000 ]
                         :     var4:  -0.034951    0.25587   [    -1.0000     1.0000 ]
                         : -----------------------------------------------------------
                         : Start of deep neural network training on CPU using MT,  nthreads = 1
                         : 
TFHandler_DL_CPU         : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.070769    0.28960   [    -1.0000     1.0000 ]
                         :     var2:   0.074130    0.28477   [    -1.0000     1.0000 ]
                         :     var3:   0.026106    0.24582   [    -1.0000     1.0000 ]
                         :     var4:  -0.034951    0.25587   [    -1.0000     1.0000 ]
                         : -----------------------------------------------------------
                         : *****   Deep Learning Network *****
DEEP NEURAL NETWORK:   Depth = 4  Input = ( 1, 1, 4 )  Batch size = 100  Loss function = C
   Layer 0   DENSE Layer:   ( Input =     4 , Width =   100 )  Output = (  1 ,   100 ,   100 )   Activation Function = Tanh
   Layer 1   DENSE Layer:   ( Input =   100 , Width =    50 )  Output = (  1 ,   100 ,    50 )   Activation Function = Tanh
   Layer 2   DENSE Layer:   ( Input =    50 , Width =    10 )  Output = (  1 ,   100 ,    10 )   Activation Function = Tanh
   Layer 3   DENSE Layer:   ( Input =    10 , Width =     4 )  Output = (  1 ,   100 ,     4 )   Activation Function = Identity
                         : Using 3200 events for training and 800 for testing
                         : Compute initial loss  on the validation data 
                         : Training phase 1 of 1:  Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.690087
                         : --------------------------------------------------------------
                         :      Epoch |   Train Err.   Val. Err.  t(s)/epoch   t(s)/Loss   nEvents/s Conv. Steps
                         : --------------------------------------------------------------
                         :    Start epoch iteration ...
                         :          1 Minimum Test error found - save the configuration 
                         :          1 |     0.610001    0.534418   0.0771389  0.00668132     45417.4           0
                         :          2 Minimum Test error found - save the configuration 
                         :          2 |      0.50115     0.46764   0.0777517   0.0066562     45009.9           0
                         :          3 Minimum Test error found - save the configuration 
                         :          3 |     0.459096    0.434423   0.0783488  0.00673334     44683.1           0
                         :          4 Minimum Test error found - save the configuration 
                         :          4 |     0.432475    0.408532   0.0788187  0.00679436     44429.4           0
                         :          5 Minimum Test error found - save the configuration 
                         :          5 |     0.410669    0.388664   0.0791245  0.00679229     44240.3           0
                         :          6 Minimum Test error found - save the configuration 
                         :          6 |     0.392822    0.373739   0.0794571  0.00684441     44069.4           0
                         :          7 Minimum Test error found - save the configuration 
                         :          7 |     0.379452    0.362485   0.0797781  0.00688272     43898.5           0
                         :          8 Minimum Test error found - save the configuration 
                         :          8 |      0.36776    0.353549   0.0800716  0.00700205     43793.9           0
                         :          9 Minimum Test error found - save the configuration 
                         :          9 |     0.357336    0.343097   0.0803073  0.00692332     43606.3           0
                         :         10 Minimum Test error found - save the configuration 
                         :         10 |      0.34901    0.336095   0.0803229   0.0069303     43601.1           0
                         :         11 Minimum Test error found - save the configuration 
                         :         11 |     0.342042    0.330982   0.0804597  0.00695681     43535.7           0
                         :         12 Minimum Test error found - save the configuration 
                         :         12 |     0.335918    0.322015   0.0819198  0.00698234     42702.3           0
                         :         13 Minimum Test error found - save the configuration 
                         :         13 |     0.329942    0.316913   0.0806916  0.00694488     43391.7           0
                         :         14 Minimum Test error found - save the configuration 
                         :         14 |     0.324358     0.31165   0.0812559  0.00702322     43107.7           0
                         :         15 Minimum Test error found - save the configuration 
                         :         15 |     0.319489    0.308584   0.0811433  0.00700688     43163.7           0
                         :         16 Minimum Test error found - save the configuration 
                         :         16 |     0.314742    0.300798   0.0814305  0.00701602     43002.4           0
                         :         17 |      0.31049     0.30211   0.0810719  0.00693351     43162.5           1
                         :         18 Minimum Test error found - save the configuration 
                         :         18 |      0.30755    0.294604    0.081252  0.00704584     43123.1           0
                         :         19 |     0.304244    0.295254   0.0811693  0.00694858     43114.6           1
                         :         20 Minimum Test error found - save the configuration 
                         :         20 |     0.300225    0.288021   0.0813627  0.00705675     43065.2           0
                         : 
                         : Elapsed time for training with 4000 events: 1.64 sec         
                         : Dataset[dataset] : Create results for training
                         : Dataset[dataset] : Multiclass evaluation of DL_CPU on training sample
                         : Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.112 sec       
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
                         : Creating xml weight file: ␛[0;36mdataset/weights/TMVAMulticlass_DL_CPU.weights.xml␛[0m
                         : Creating standalone class: ␛[0;36mdataset/weights/TMVAMulticlass_DL_CPU.class.C␛[0m
Factory                  : Training finished
                         : 
                         : Ranking input variables (method specific)...
BDTG                     : Ranking result (top variable is best ranked)
                         : --------------------------------------
                         : Rank : Variable  : Variable Importance
                         : --------------------------------------
                         :    1 : var4      : 3.117e-01
                         :    2 : var1      : 2.504e-01
                         :    3 : var2      : 2.430e-01
                         :    4 : var3      : 1.949e-01
                         : --------------------------------------
MLP                      : Ranking result (top variable is best ranked)
                         : -----------------------------
                         : Rank : Variable  : Importance
                         : -----------------------------
                         :    1 : var4      : 6.076e+01
                         :    2 : var2      : 4.824e+01
                         :    3 : var1      : 2.116e+01
                         :    4 : var3      : 1.692e+01
                         : -----------------------------
PDEFoam                  : Ranking result (top variable is best ranked)
                         : --------------------------------------
                         : Rank : Variable  : Variable Importance
                         : --------------------------------------
                         :    1 : var4      : 2.991e-01
                         :    2 : var1      : 2.930e-01
                         :    3 : var3      : 2.365e-01
                         :    4 : var2      : 1.714e-01
                         : --------------------------------------
                         : No variable ranking supplied by classifier: DL_CPU
TH1.Print Name  = TrainingHistory_DL_CPU_trainingError, Entries= 0, Total sum= 7.44877
TH1.Print Name  = TrainingHistory_DL_CPU_valError, Entries= 0, Total sum= 7.07357
Factory                  : === Destroy and recreate all methods via weight files for testing ===
                         : 
                         : Reading weight file: ␛[0;36mdataset/weights/TMVAMulticlass_BDTG.weights.xml␛[0m
                         : Reading weight file: ␛[0;36mdataset/weights/TMVAMulticlass_MLP.weights.xml␛[0m
MLP                      : Building Network. 
                         : Initializing weights
                         : Reading weight file: ␛[0;36mdataset/weights/TMVAMulticlass_PDEFoam.weights.xml␛[0m
                         : Read foams from file: ␛[0;36mdataset/weights/TMVAMulticlass_PDEFoam.weights_foams.root␛[0m
                         : Reading weight file: ␛[0;36mdataset/weights/TMVAMulticlass_DL_CPU.weights.xml␛[0m
Factory                  : ␛[1mTest all methods␛[0m
Factory                  : Test method: BDTG for Multiclass classification performance
                         : 
                         : Dataset[dataset] : Create results for testing
                         : Dataset[dataset] : Multiclass evaluation of BDTG on testing sample
                         : Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.999 sec       
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
Factory                  : Test method: MLP for Multiclass classification performance
                         : 
                         : Dataset[dataset] : Create results for testing
                         : Dataset[dataset] : Multiclass evaluation of MLP on testing sample
                         : Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.0167 sec       
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
Factory                  : Test method: PDEFoam for Multiclass classification performance
                         : 
                         : Dataset[dataset] : Create results for testing
                         : Dataset[dataset] : Multiclass evaluation of PDEFoam on testing sample
                         : Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.131 sec       
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
Factory                  : Test method: DL_CPU for Multiclass classification performance
                         : 
                         : Dataset[dataset] : Create results for testing
                         : Dataset[dataset] : Multiclass evaluation of DL_CPU on testing sample
                         : Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.113 sec       
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
Factory                  : ␛[1mEvaluate all methods␛[0m
                         : Evaluate multiclass classification method: BDTG
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
TFHandler_BDTG           : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.070153     1.0224   [    -4.0592     3.5808 ]
                         :     var2:    0.30372     1.0460   [    -3.6952     3.7877 ]
                         :     var3:    0.12152     1.1222   [    -3.6800     3.9200 ]
                         :     var4:  -0.072602     1.2766   [    -4.8486     4.2221 ]
                         : -----------------------------------------------------------
                         : Evaluate multiclass classification method: MLP
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
TFHandler_MLP            : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.070153     1.0224   [    -4.0592     3.5808 ]
                         :     var2:    0.30372     1.0460   [    -3.6952     3.7877 ]
                         :     var3:    0.12152     1.1222   [    -3.6800     3.9200 ]
                         :     var4:  -0.072602     1.2766   [    -4.8486     4.2221 ]
                         : -----------------------------------------------------------
                         : Evaluate multiclass classification method: PDEFoam
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
TFHandler_PDEFoam        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.070153     1.0224   [    -4.0592     3.5808 ]
                         :     var2:    0.30372     1.0460   [    -3.6952     3.7877 ]
                         :     var3:    0.12152     1.1222   [    -3.6800     3.9200 ]
                         :     var4:  -0.072602     1.2766   [    -4.8486     4.2221 ]
                         : -----------------------------------------------------------
                         : Evaluate multiclass classification method: DL_CPU
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
                         : Creating multiclass response histograms...
                         : Creating multiclass performance histograms...
TFHandler_DL_CPU         : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.077270    0.29534   [    -1.1155     1.0914 ]
                         :     var2:   0.068045    0.27981   [    -1.0016     1.0000 ]
                         :     var3:   0.027548    0.24565   [   -0.80459    0.85902 ]
                         :     var4:  -0.034157    0.25816   [    -1.0000    0.83435 ]
                         : -----------------------------------------------------------
TFHandler_DL_CPU         : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.077270    0.29534   [    -1.1155     1.0914 ]
                         :     var2:   0.068045    0.27981   [    -1.0016     1.0000 ]
                         :     var3:   0.027548    0.24565   [   -0.80459    0.85902 ]
                         :     var4:  -0.034157    0.25816   [    -1.0000    0.83435 ]
                         : -----------------------------------------------------------
                         : 
                         : 1-vs-rest performance metrics per class
                         : -------------------------------------------------------------------------------------------------------
                         : 
                         : Considers the listed class as signal and the other classes
                         : as background, reporting the resulting binary performance.
                         : A score of 0.820 (0.850) means 0.820 was acheived on the
                         : test set and 0.850 on the training set.
                         : 
                         : Dataset        MVA Method     ROC AUC        Sig eff@B=0.01 Sig eff@B=0.10 Sig eff@B=0.30 
                         : Name:          / Class:       test  (train)  test  (train)  test  (train)  test  (train)  
                         : 
                         : dataset        BDTG           
                         : ------------------------------
                         :                Signal         0.968 (0.978)  0.508 (0.605)  0.914 (0.945)  0.990 (0.996)  
                         :                bg0            0.910 (0.931)  0.256 (0.288)  0.737 (0.791)  0.922 (0.956)  
                         :                bg1            0.947 (0.954)  0.437 (0.511)  0.833 (0.856)  0.971 (0.971)  
                         :                bg2            0.978 (0.982)  0.585 (0.678)  0.951 (0.956)  0.999 (0.996)  
                         : 
                         : dataset        MLP            
                         : ------------------------------
                         :                Signal         0.970 (0.975)  0.596 (0.632)  0.933 (0.938)  0.988 (0.993)  
                         :                bg0            0.929 (0.934)  0.303 (0.298)  0.787 (0.793)  0.949 (0.961)  
                         :                bg1            0.962 (0.967)  0.467 (0.553)  0.881 (0.906)  0.985 (0.992)  
                         :                bg2            0.975 (0.979)  0.629 (0.699)  0.929 (0.940)  0.998 (0.998)  
                         : 
                         : dataset        PDEFoam        
                         : ------------------------------
                         :                Signal         0.916 (0.928)  0.294 (0.382)  0.744 (0.782)  0.932 (0.952)  
                         :                bg0            0.837 (0.848)  0.109 (0.147)  0.519 (0.543)  0.833 (0.851)  
                         :                bg1            0.890 (0.902)  0.190 (0.226)  0.606 (0.646)  0.923 (0.929)  
                         :                bg2            0.967 (0.972)  0.510 (0.527)  0.900 (0.926)  0.993 (0.998)  
                         : 
                         : dataset        DL_CPU         
                         : ------------------------------
                         :                Signal         0.965 (0.966)  0.372 (0.468)  0.924 (0.921)  0.993 (0.992)  
                         :                bg0            0.918 (0.920)  0.293 (0.289)  0.756 (0.742)  0.933 (0.935)  
                         :                bg1            0.948 (0.947)  0.324 (0.345)  0.864 (0.853)  0.973 (0.970)  
                         :                bg2            0.917 (0.919)  0.508 (0.517)  0.752 (0.757)  0.907 (0.915)  
                         : 
                         : -------------------------------------------------------------------------------------------------------
                         : 
                         : 
                         : Confusion matrices for all methods
                         : -------------------------------------------------------------------------------------------------------
                         : 
                         : Does a binary comparison between the two classes given by a 
                         : particular row-column combination. In each case, the class 
                         : given by the row is considered signal while the class given 
                         : by the column index is considered background.
                         : 
                         : === Showing confusion matrix for method : BDTG           
                         : (Signal Efficiency for Background Efficiency 0.01%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.497 (0.373)  0.710 (0.693)  0.680 (0.574) 
                         :  bg0            0.271 (0.184)  -              0.239 (0.145)  0.705 (0.667) 
                         :  bg1            0.855 (0.766)  0.369 (0.222)  -              0.587 (0.578) 
                         :  bg2            0.714 (0.585)  0.705 (0.581)  0.648 (0.601)  -             
                         : 
                         : (Signal Efficiency for Background Efficiency 0.10%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.911 (0.853)  0.991 (0.981)  0.945 (0.913) 
                         :  bg0            0.833 (0.774)  -              0.654 (0.582)  0.930 (0.901) 
                         :  bg1            0.971 (0.980)  0.716 (0.681)  -              0.871 (0.862) 
                         :  bg2            0.976 (0.951)  0.971 (0.973)  0.936 (0.941)  -             
                         : 
                         : (Signal Efficiency for Background Efficiency 0.30%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.978 (0.957)  0.999 (1.000)  0.998 (0.997) 
                         :  bg0            0.965 (0.926)  -              0.874 (0.835)  0.991 (0.976) 
                         :  bg1            1.000 (0.999)  0.916 (0.894)  -              0.988 (0.985) 
                         :  bg2            0.999 (0.999)  0.997 (0.999)  0.996 (0.997)  -             
                         : 
                         : === Showing confusion matrix for method : MLP            
                         : (Signal Efficiency for Background Efficiency 0.01%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.465 (0.490)  0.974 (0.953)  0.632 (0.498) 
                         :  bg0            0.320 (0.269)  -              0.224 (0.250)  0.655 (0.627) 
                         :  bg1            0.943 (0.920)  0.341 (0.275)  -              0.632 (0.687) 
                         :  bg2            0.665 (0.642)  0.697 (0.680)  0.706 (0.598)  -             
                         : 
                         : (Signal Efficiency for Background Efficiency 0.10%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.865 (0.854)  0.996 (0.994)  0.908 (0.907) 
                         :  bg0            0.784 (0.776)  -              0.666 (0.655)  0.919 (0.895) 
                         :  bg1            0.998 (0.998)  0.791 (0.785)  -              0.912 (0.902) 
                         :  bg2            0.943 (0.903)  0.946 (0.939)  0.924 (0.928)  -             
                         : 
                         : (Signal Efficiency for Background Efficiency 0.30%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.978 (0.964)  0.997 (0.997)  0.993 (0.986) 
                         :  bg0            0.952 (0.924)  -              0.936 (0.928)  0.992 (0.990) 
                         :  bg1            1.000 (1.000)  0.945 (0.936)  -              0.998 (0.995) 
                         :  bg2            0.994 (0.985)  0.998 (0.998)  0.998 (0.998)  -             
                         : 
                         : === Showing confusion matrix for method : PDEFoam        
                         : (Signal Efficiency for Background Efficiency 0.01%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.289 (0.233)  0.467 (0.436)  0.421 (0.332) 
                         :  bg0            0.100 (0.045)  -              0.132 (0.116)  0.540 (0.313) 
                         :  bg1            0.209 (0.434)  0.153 (0.092)  -              0.347 (0.323) 
                         :  bg2            0.560 (0.552)  0.445 (0.424)  0.501 (0.506)  -             
                         : 
                         : (Signal Efficiency for Background Efficiency 0.10%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.665 (0.640)  0.854 (0.822)  0.807 (0.790) 
                         :  bg0            0.538 (0.520)  -              0.415 (0.374)  0.843 (0.833) 
                         :  bg1            0.885 (0.886)  0.542 (0.491)  -              0.728 (0.646) 
                         :  bg2            0.928 (0.890)  0.956 (0.959)  0.847 (0.895)  -             
                         : 
                         : (Signal Efficiency for Background Efficiency 0.30%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.898 (0.878)  0.971 (0.950)  0.982 (0.975) 
                         :  bg0            0.828 (0.810)  -              0.696 (0.676)  0.954 (0.951) 
                         :  bg1            0.951 (0.966)  0.803 (0.745)  -              0.958 (0.966) 
                         :  bg2            0.998 (0.991)  0.998 (0.996)  0.998 (0.993)  -             
                         : 
                         : === Showing confusion matrix for method : DL_CPU         
                         : (Signal Efficiency for Background Efficiency 0.01%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.421 (0.538)  0.941 (0.955)  0.376 (0.223) 
                         :  bg0            0.321 (0.293)  -              0.240 (0.210)  0.479 (0.459) 
                         :  bg1            0.907 (0.897)  0.212 (0.196)  -              0.384 (0.425) 
                         :  bg2            0.542 (0.506)  0.521 (0.531)  0.500 (0.481)  -             
                         : 
                         : (Signal Efficiency for Background Efficiency 0.10%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.891 (0.905)  0.997 (0.995)  0.789 (0.736) 
                         :  bg0            0.731 (0.754)  -              0.704 (0.730)  0.784 (0.800) 
                         :  bg1            0.990 (0.991)  0.737 (0.732)  -              0.776 (0.795) 
                         :  bg2            0.803 (0.799)  0.758 (0.754)  0.719 (0.715)  -             
                         : 
                         : (Signal Efficiency for Background Efficiency 0.30%)
                         : ---------------------------------------------------
                         :                 Signal         bg0            bg1            bg2           
                         :                  test (train)   test (train)   test (train)   test (train) 
                         :  Signal         -              0.980 (0.982)  1.000 (0.999)  0.989 (0.990) 
                         :  bg0            0.929 (0.931)  -              0.918 (0.924)  0.968 (0.961) 
                         :  bg1            1.000 (0.999)  0.954 (0.962)  -              0.945 (0.952) 
                         :  bg2            0.958 (0.936)  0.935 (0.924)  0.851 (0.865)  -             
                         : 
                         : -------------------------------------------------------------------------------------------------------
                         : 
Dataset:dataset          : Created tree 'TestTree' with 4000 events
                         : 
Dataset:dataset          : Created tree 'TrainTree' with 4000 events
                         : 
Factory                  : ␛[1mThank you for using TMVA!␛[0m
                         : ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m
==> Wrote root file: TMVAMulticlass.root
==> TMVAMulticlass is done!