Start Test TMVAGAexample
========================
 
EXAMPLE
 range: 0   15
 range: 0   13
 range: 0   5
                         : fitness: -164.272    f_0: 13.9655     f_1: 12.4787     f_2: 0     
---
                         : fitness: -169.878    f_0: 13.9655     f_1: 12.8801     f_2: 0     
---
                         : fitness: -169.878    f_0: 13.9655     f_1: 12.8801     f_2: 0     
---
                         : fitness: -169.878    f_0: 13.9655     f_1: 12.8801     f_2: 0     
---
                         : fitness: -169.878    f_0: 13.9655     f_1: 12.8801     f_2: 0     
---
                         : fitness: -169.878    f_0: 13.9655     f_1: 12.8801     f_2: 0     
---
                         : fitness: -183.202    f_0: 15     f_1: 12.8801     f_2: 0     
---
                         : fitness: -183.202    f_0: 15     f_1: 12.8801     f_2: 0     
---
                         : fitness: -183.202    f_0: 15     f_1: 12.8801     f_2: 0     
---
                         : fitness: -183.202    f_0: 15     f_1: 12.8801     f_2: 0     
---
                         : fitness: -183.547    f_0: 15     f_1: 12.9031     f_2: 0     
---
                         : fitness: -183.967    f_0: 15     f_1: 12.9311     f_2: 0     
---
                         : fitness: -183.967    f_0: 15     f_1: 12.9311     f_2: 0     
---
                         : fitness: -183.967    f_0: 15     f_1: 12.9311     f_2: 0     
---
                         : fitness: -183.967    f_0: 15     f_1: 12.9311     f_2: 0     
---
                         : fitness: -183.986    f_0: 15     f_1: 12.9324     f_2: 0     
---
                         : fitness: -184.543    f_0: 15     f_1: 12.9695     f_2: 0     
---
                         : fitness: -184.543    f_0: 15     f_1: 12.9695     f_2: 0     
---
                         : fitness: -184.543    f_0: 15     f_1: 12.9695     f_2: 0     
---
                         : fitness: -184.543    f_0: 15     f_1: 12.9695     f_2: 0     
---
                         : fitness: -184.543    f_0: 15     f_1: 12.9695     f_2: 0     
---
                         : fitness: -184.543    f_0: 15     f_1: 12.9695     f_2: 0     
---
                         : fitness: -184.543    f_0: 15     f_1: 12.9695     f_2: 0     
---
                         : fitness: -184.543    f_0: 15     f_1: 12.9695     f_2: 0     
---
                         : fitness: -184.907    f_0: 15     f_1: 12.9938     f_2: 0     
---
                         : fitness: -184.907    f_0: 15     f_1: 12.9938     f_2: 0     
---
                         : fitness: -184.907    f_0: 15     f_1: 12.9938     f_2: 0     
---
                         : fitness: -184.907    f_0: 15     f_1: 12.9938     f_2: 0     
---
                         : fitness: -184.907    f_0: 15     f_1: 12.9938     f_2: 0     
---
                         : fitness: -184.907    f_0: 15     f_1: 12.9938     f_2: 0     
---
                         : fitness: -184.907    f_0: 15     f_1: 12.9938     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
                         : fitness: -184.973    f_0: 15     f_1: 12.9982     f_2: 0     
---
FACTOR 0 : 15
FACTOR 1 : 12.9982
FACTOR 2 : 0
   
#include <iostream> 
#include <vector>
 
 
using namespace std;
 
 
    public:
       }
 
       
       
       
       
       
       
       
       
       
       
       
       Double_t EstimatorFunction( std::vector<Double_t> & factors ){
 
           
           return (10.- factors.at(0) *factors.at(1) + factors.at(2));
 
           
       }
};
 
 
    public:
       }
 
 
       
       
       
       
       
       
       
       
 
       
       
       
       
       
       
       
      
};
 
 
 
void TMVAGAexample() {
 
   std::cout << "Start Test TMVAGAexample" << std::endl
             << "========================" << std::endl
             << "\nEXAMPLE"              << std::endl;
   
   
   vector<Interval*> ranges;
   ranges.push_back( 
new Interval(0,15,30) );
 
   ranges.push_back( 
new Interval(0,5,3) );
 
 
   for( std::vector<Interval*>::iterator it = ranges.begin(); it != ranges.end(); it++ ){
      std::cout << " range: " << (*it)->GetMin() << "   " << (*it)->GetMax() << std::endl;
   }
 
 
   
   
   
   
   
 
   MyGA2nd mg( *myFitness, 100, ranges );
   
 
   #define CONVSTEPS 20
   #define CONVCRIT 0.0001
   #define SCSTEPS 10
   #define SCRATE 5
   #define SCFACTOR 0.95
 
   do {
      
      mg.Init();
 
      
      mg.CalculateFitness();
 
      mg.GetGeneticPopulation().Print(0);
      std::cout << "---" << std::endl;
 
      
      mg.GetGeneticPopulation().TrimPopulation();
 
      
      
      
      
      
      
      
      
      mg.SpreadControl( SCSTEPS, SCRATE, SCFACTOR );
 
   } while (!mg.HasConverged( CONVSTEPS, CONVCRIT ));  
 
   GeneticGenes* genes = mg.GetGeneticPopulation().GetGenes( 0 );
 
   std::vector<Double_t> gvec;
   for( std::vector<Double_t>::iterator it = gvec.begin(); it<gvec.end(); it++ ){
      std::cout << 
"FACTOR " << 
n << 
" : " << (*it) << std::endl;
 
   }
}
 
 
int main( 
int argc, 
char** argv )
 
{
   TMVAGAexample();
}
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
 
Base definition for genetic algorithm.
 
Cut optimisation interface class for genetic algorithm.
 
std::vector< Double_t > & GetFactors()
 
Interface for a fitter 'target'.
 
The TMVA::Interval Class.
 
create variable transformations