==> Start TMVAClassificationApplication
                         : Booking "BDT method" of type "BDT" from dataset/weights/TMVAClassification_BDT.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_BDT.weights.xml
<HEADER> DataSetInfo              : [Default] : Added class "Signal"
<HEADER> DataSetInfo              : [Default] : Added class "Background"
                         : Booked classifier "BDT" of type: "BDT"
                         : Booking "Cuts method" of type "Cuts" from dataset/weights/TMVAClassification_Cuts.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_Cuts.weights.xml
                         : Read cuts optimised using sample of MC events
                         : Reading 100 signal efficiency bins for 4 variables
                         : Booked classifier "Cuts" of type: "Cuts"
                         : Booking "CutsD method" of type "Cuts" from dataset/weights/TMVAClassification_CutsD.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_CutsD.weights.xml
                         : Read cuts optimised using sample of MC events
                         : Reading 100 signal efficiency bins for 4 variables
                         : Booked classifier "CutsD" of type: "Cuts"
                         : Booking "FDA_GA method" of type "FDA" from dataset/weights/TMVAClassification_FDA_GA.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_FDA_GA.weights.xml
                         : User-defined formula string       : "(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3"
                         : TFormula-compatible formula string: "[0]+[1]*[5]+[2]*[6]+[3]*[7]+[4]*[8]"
                         : Booked classifier "FDA_GA" of type: "FDA"
                         : Booking "KNN method" of type "KNN" from dataset/weights/TMVAClassification_KNN.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_KNN.weights.xml
                         : Creating kd-tree with 2000 events
                         : Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN                : Optimizing tree for 4 variables with 2000 values
                         : <Fill> Class 1 has     1000 events
                         : <Fill> Class 2 has     1000 events
                         : Booked classifier "KNN" of type: "KNN"
                         : Booking "LD method" of type "LD" from dataset/weights/TMVAClassification_LD.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_LD.weights.xml
                         : Booked classifier "LD" of type: "LD"
                         : Booking "Likelihood method" of type "Likelihood" from dataset/weights/TMVAClassification_Likelihood.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_Likelihood.weights.xml
                         : Booked classifier "Likelihood" of type: "Likelihood"
                         : Booking "LikelihoodPCA method" of type "Likelihood" from dataset/weights/TMVAClassification_LikelihoodPCA.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_LikelihoodPCA.weights.xml
                         : Booked classifier "LikelihoodPCA" of type: "Likelihood"
                         : Booking "MLPBNN method" of type "MLP" from dataset/weights/TMVAClassification_MLPBNN.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_MLPBNN.weights.xml
<HEADER> MLPBNN                   : Building Network. 
                         : Initializing weights
                         : Booked classifier "MLPBNN" of type: "MLP"
                         : Booking "PDEFoam method" of type "PDEFoam" from dataset/weights/TMVAClassification_PDEFoam.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_PDEFoam.weights.xml
                         : Read foams from file: dataset/weights/TMVAClassification_PDEFoam.weights_foams.root
                         : Booked classifier "PDEFoam" of type: "PDEFoam"
                         : Booking "PDERS method" of type "PDERS" from dataset/weights/TMVAClassification_PDERS.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_PDERS.weights.xml
                         : signal and background scales: 0.001 0.001
                         : Booked classifier "PDERS" of type: "PDERS"
                         : Booking "RuleFit method" of type "RuleFit" from dataset/weights/TMVAClassification_RuleFit.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_RuleFit.weights.xml
                         : Booked classifier "RuleFit" of type: "RuleFit"
                         : Booking "SVM method" of type "SVM" from dataset/weights/TMVAClassification_SVM.weights.xml.
                         : Reading weight file: dataset/weights/TMVAClassification_SVM.weights.xml
                         : Booked classifier "SVM" of type: "SVM"
--- TMVAClassificationApp    : Using input file: ./files/tmva_class_example.root
--- Select signal sample
                         : Rebuilding Dataset Default
--- End of event loop: Real time 0:00:01, CP time 1.330
--- Created root file: "TMVApp.root" containing the MVA output histograms
==> TMVAClassificationApplication is done!
 
   
#include <cstdlib>
#include <vector>
#include <iostream>
#include <map>
#include <string>
 
 
 
 
void TMVAClassificationApplication( 
TString myMethodList = 
"" )
 
{
 
   
   
 
   
   std::map<std::string,int> Use;
 
   
   Use["Cuts"]            = 1;
   Use["CutsD"]           = 1;
   Use["CutsPCA"]         = 0;
   Use["CutsGA"]          = 0;
   Use["CutsSA"]          = 0;
   
   
   Use["Likelihood"]      = 1;
   Use["LikelihoodD"]     = 0; 
   Use["LikelihoodPCA"]   = 1; 
   Use["LikelihoodKDE"]   = 0;
   Use["LikelihoodMIX"]   = 0;
   
   
   Use["PDERS"]           = 1;
   Use["PDERSD"]          = 0;
   Use["PDERSPCA"]        = 0;
   Use["PDEFoam"]         = 1;
   Use["PDEFoamBoost"]    = 0; 
   Use["KNN"]             = 1; 
   
   
   Use["LD"]              = 1; 
   Use["Fisher"]          = 0;
   Use["FisherG"]         = 0;
   Use["BoostedFisher"]   = 0; 
   Use["HMatrix"]         = 0;
   
   
   Use["FDA_GA"]          = 1; 
   Use["FDA_SA"]          = 0;
   Use["FDA_MC"]          = 0;
   Use["FDA_MT"]          = 0;
   Use["FDA_GAMT"]        = 0;
   Use["FDA_MCMT"]        = 0;
   
   
   Use["MLP"]             = 0; 
   Use["MLPBFGS"]         = 0; 
   Use["MLPBNN"]          = 1; 
   Use["CFMlpANN"]        = 0; 
   Use["TMlpANN"]         = 0; 
   Use["DNN_CPU"] = 0;         
   Use["DNN_GPU"] = 0;         
   
   
   Use["SVM"]             = 1;
   
   
   Use["BDT"]             = 1; 
   Use["BDTG"]            = 0; 
   Use["BDTB"]            = 0; 
   Use["BDTD"]            = 0; 
   Use["BDTF"]            = 0; 
   
   
   Use["RuleFit"]         = 1;
   
   Use["Plugin"]          = 0;
   Use["Category"]        = 0;
   Use["SVM_Gauss"]       = 0;
   Use["SVM_Poly"]        = 0;
   Use["SVM_Lin"]         = 0;
 
   std::cout << std::endl;
   std::cout << "==> Start TMVAClassificationApplication" << std::endl;
 
   
   if (myMethodList != "") {
      for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
 
      std::vector<TString> mlist = gTools().
SplitString( myMethodList, 
',' );
 
      for (
UInt_t i=0; i<mlist.size(); i++) {
 
         std::string regMethod(mlist[i]);
 
         if (Use.find(regMethod) == Use.end()) {
            std::cout << "Method \"" << regMethod
                      << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
            for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
               std::cout << it->first << " ";
            }
            std::cout << std::endl;
            return;
         }
         Use[regMethod] = 1;
      }
   }
 
   
 
   
 
 
   
   
 
   
 
   Float_t Category_cat1, Category_cat2, Category_cat3;
 
   if (Use["Category"]){
      
      reader->
AddSpectator( 
"Category_cat1 := var3<=0",             &Category_cat1 );
 
      reader->
AddSpectator( 
"Category_cat2 := (var3>0)&&(var4<0)",  &Category_cat2 );
 
      reader->
AddSpectator( 
"Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 );
 
   }
 
   
 
   TString prefix = 
"TMVAClassification";
 
 
   
   for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
      if (it->second) {
         reader->
BookMVA( methodName, weightfile );
 
      }
   }
 
   
 
   if (Use[
"Likelihood"])    histLk      = 
new TH1F( 
"MVA_Likelihood",    
"MVA_Likelihood",    nbin, -1, 1 );
 
   if (Use[
"LikelihoodD"])   histLkD     = 
new TH1F( 
"MVA_LikelihoodD",   
"MVA_LikelihoodD",   nbin, -1, 0.9999 );
 
   if (Use[
"LikelihoodPCA"]) histLkPCA   = 
new TH1F( 
"MVA_LikelihoodPCA", 
"MVA_LikelihoodPCA", nbin, -1, 1 );
 
   if (Use[
"LikelihoodKDE"]) histLkKDE   = 
new TH1F( 
"MVA_LikelihoodKDE", 
"MVA_LikelihoodKDE", nbin,  -0.00001, 0.99999 );
 
   if (Use[
"LikelihoodMIX"]) histLkMIX   = 
new TH1F( 
"MVA_LikelihoodMIX", 
"MVA_LikelihoodMIX", nbin,  0, 1 );
 
   if (Use[
"PDERS"])         histPD      = 
new TH1F( 
"MVA_PDERS",         
"MVA_PDERS",         nbin,  0, 1 );
 
   if (Use[
"PDERSD"])        histPDD     = 
new TH1F( 
"MVA_PDERSD",        
"MVA_PDERSD",        nbin,  0, 1 );
 
   if (Use[
"PDERSPCA"])      histPDPCA   = 
new TH1F( 
"MVA_PDERSPCA",      
"MVA_PDERSPCA",      nbin,  0, 1 );
 
   if (Use[
"KNN"])           histKNN     = 
new TH1F( 
"MVA_KNN",           
"MVA_KNN",           nbin,  0, 1 );
 
   if (Use[
"HMatrix"])       histHm      = 
new TH1F( 
"MVA_HMatrix",       
"MVA_HMatrix",       nbin, -0.95, 1.55 );
 
   if (Use[
"Fisher"])        histFi      = 
new TH1F( 
"MVA_Fisher",        
"MVA_Fisher",        nbin, -4, 4 );
 
   if (Use[
"FisherG"])       histFiG     = 
new TH1F( 
"MVA_FisherG",       
"MVA_FisherG",       nbin, -1, 1 );
 
   if (Use[
"BoostedFisher"]) histFiB     = 
new TH1F( 
"MVA_BoostedFisher", 
"MVA_BoostedFisher", nbin, -2, 2 );
 
   if (Use[
"LD"])            histLD      = 
new TH1F( 
"MVA_LD",            
"MVA_LD",            nbin, -2, 2 );
 
   if (Use[
"MLP"])           histNn      = 
new TH1F( 
"MVA_MLP",           
"MVA_MLP",           nbin, -1.25, 1.5 );
 
   if (Use[
"MLPBFGS"])       histNnbfgs  = 
new TH1F( 
"MVA_MLPBFGS",       
"MVA_MLPBFGS",       nbin, -1.25, 1.5 );
 
   if (Use[
"MLPBNN"])        histNnbnn   = 
new TH1F( 
"MVA_MLPBNN",        
"MVA_MLPBNN",        nbin, -1.25, 1.5 );
 
   if (Use[
"CFMlpANN"])      histNnC     = 
new TH1F( 
"MVA_CFMlpANN",      
"MVA_CFMlpANN",      nbin,  0, 1 );
 
   if (Use[
"TMlpANN"])       histNnT     = 
new TH1F( 
"MVA_TMlpANN",       
"MVA_TMlpANN",       nbin, -1.3, 1.3 );
 
   if (Use[
"DNN_GPU"]) histDnnGpu = 
new TH1F(
"MVA_DNN_GPU", 
"MVA_DNN_GPU", nbin, -0.1, 1.1);
 
   if (Use[
"DNN_CPU"]) histDnnCpu = 
new TH1F(
"MVA_DNN_CPU", 
"MVA_DNN_CPU", nbin, -0.1, 1.1);
 
   if (Use[
"BDT"])           histBdt     = 
new TH1F( 
"MVA_BDT",           
"MVA_BDT",           nbin, -0.8, 0.8 );
 
   if (Use[
"BDTG"])          histBdtG    = 
new TH1F( 
"MVA_BDTG",          
"MVA_BDTG",          nbin, -1.0, 1.0 );
 
   if (Use[
"BDTB"])          histBdtB    = 
new TH1F( 
"MVA_BDTB",          
"MVA_BDTB",          nbin, -1.0, 1.0 );
 
   if (Use[
"BDTD"])          histBdtD    = 
new TH1F( 
"MVA_BDTD",          
"MVA_BDTD",          nbin, -0.8, 0.8 );
 
   if (Use[
"BDTF"])          histBdtF    = 
new TH1F( 
"MVA_BDTF",          
"MVA_BDTF",          nbin, -1.0, 1.0 );
 
   if (Use[
"RuleFit"])       histRf      = 
new TH1F( 
"MVA_RuleFit",       
"MVA_RuleFit",       nbin, -2.0, 2.0 );
 
   if (Use[
"SVM_Gauss"])     histSVMG    = 
new TH1F( 
"MVA_SVM_Gauss",     
"MVA_SVM_Gauss",     nbin,  0.0, 1.0 );
 
   if (Use[
"SVM_Poly"])      histSVMP    = 
new TH1F( 
"MVA_SVM_Poly",      
"MVA_SVM_Poly",      nbin,  0.0, 1.0 );
 
   if (Use[
"SVM_Lin"])       histSVML    = 
new TH1F( 
"MVA_SVM_Lin",       
"MVA_SVM_Lin",       nbin,  0.0, 1.0 );
 
   if (Use[
"FDA_MT"])        histFDAMT   = 
new TH1F( 
"MVA_FDA_MT",        
"MVA_FDA_MT",        nbin, -2.0, 3.0 );
 
   if (Use[
"FDA_GA"])        histFDAGA   = 
new TH1F( 
"MVA_FDA_GA",        
"MVA_FDA_GA",        nbin, -2.0, 3.0 );
 
   if (Use[
"Category"])      histCat     = 
new TH1F( 
"MVA_Category",      
"MVA_Category",      nbin, -2., 2. );
 
   if (Use[
"Plugin"])        histPBdt    = 
new TH1F( 
"MVA_PBDT",          
"MVA_BDT",           nbin, -0.8, 0.8 );
 
 
   
   if (Use["PDEFoam"]) {
      histPDEFoam    = 
new TH1F( 
"MVA_PDEFoam",       
"MVA_PDEFoam",              nbin,  0, 1 );
 
      histPDEFoamErr = 
new TH1F( 
"MVA_PDEFoamErr",    
"MVA_PDEFoam error",        nbin,  0, 1 );
 
      histPDEFoamSig = 
new TH1F( 
"MVA_PDEFoamSig",    
"MVA_PDEFoam significance", nbin,  0, 10 );
 
   }
 
   
   TH1F *probHistFi(0), *rarityHistFi(0);
 
   if (Use["Fisher"]) {
      probHistFi   = 
new TH1F( 
"MVA_Fisher_Proba",  
"MVA_Fisher_Proba",  nbin, 0, 1 );
 
      rarityHistFi = 
new TH1F( 
"MVA_Fisher_Rarity", 
"MVA_Fisher_Rarity", nbin, 0, 1 );
 
   }
 
   
   
   
   
   TString fname = 
"./tmva_class_example.root";
 
   }
   else {
      input = 
TFile::Open(
"http://root.cern.ch/files/tmva_class_example.root", 
"CACHEREAD"); 
 
   }
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }
   std::cout << 
"--- TMVAClassificationApp    : Using input file: " << 
input->GetName() << std::endl;
 
 
   
 
   
   
   
   
   
   std::cout << "--- Select signal sample" << std::endl;
 
   
 
   std::vector<Float_t> vecVar(4); 
 
   std::cout << 
"--- Processing: " << theTree->
GetEntries() << 
" events" << std::endl;
 
 
      if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl;
 
 
      var1 = userVar1 + userVar2;
      var2 = userVar1 - userVar2;
 
      
 
      if (Use["CutsGA"]) {
         
         if (passed) nSelCutsGA++;
      }
 
      if (Use[
"Likelihood"   ])   histLk     ->Fill( reader->
EvaluateMVA( 
"Likelihood method"    ) );
 
      if (Use[
"LikelihoodD"  ])   histLkD    ->Fill( reader->
EvaluateMVA( 
"LikelihoodD method"   ) );
 
      if (Use[
"LikelihoodPCA"])   histLkPCA  ->Fill( reader->
EvaluateMVA( 
"LikelihoodPCA method" ) );
 
      if (Use[
"LikelihoodKDE"])   histLkKDE  ->Fill( reader->
EvaluateMVA( 
"LikelihoodKDE method" ) );
 
      if (Use[
"LikelihoodMIX"])   histLkMIX  ->Fill( reader->
EvaluateMVA( 
"LikelihoodMIX method" ) );
 
      if (Use[
"PDERS"        ])   histPD     ->Fill( reader->
EvaluateMVA( 
"PDERS method"         ) );
 
      if (Use[
"PDERSD"       ])   histPDD    ->Fill( reader->
EvaluateMVA( 
"PDERSD method"        ) );
 
      if (Use[
"PDERSPCA"     ])   histPDPCA  ->Fill( reader->
EvaluateMVA( 
"PDERSPCA method"      ) );
 
      if (Use[
"KNN"          ])   histKNN    ->Fill( reader->
EvaluateMVA( 
"KNN method"           ) );
 
      if (Use[
"HMatrix"      ])   histHm     ->Fill( reader->
EvaluateMVA( 
"HMatrix method"       ) );
 
      if (Use[
"Fisher"       ])   histFi     ->Fill( reader->
EvaluateMVA( 
"Fisher method"        ) );
 
      if (Use[
"FisherG"      ])   histFiG    ->Fill( reader->
EvaluateMVA( 
"FisherG method"       ) );
 
      if (Use[
"BoostedFisher"])   histFiB    ->Fill( reader->
EvaluateMVA( 
"BoostedFisher method" ) );
 
      if (Use[
"LD"           ])   histLD     ->Fill( reader->
EvaluateMVA( 
"LD method"            ) );
 
      if (Use[
"MLP"          ])   histNn     ->Fill( reader->
EvaluateMVA( 
"MLP method"           ) );
 
      if (Use[
"MLPBFGS"      ])   histNnbfgs ->Fill( reader->
EvaluateMVA( 
"MLPBFGS method"       ) );
 
      if (Use[
"MLPBNN"       ])   histNnbnn  ->Fill( reader->
EvaluateMVA( 
"MLPBNN method"        ) );
 
      if (Use[
"CFMlpANN"     ])   histNnC    ->Fill( reader->
EvaluateMVA( 
"CFMlpANN method"      ) );
 
      if (Use[
"TMlpANN"      ])   histNnT    ->Fill( reader->
EvaluateMVA( 
"TMlpANN method"       ) );
 
      if (Use[
"DNN_GPU"]) histDnnGpu->Fill(reader->
EvaluateMVA(
"DNN_GPU method"));
 
      if (Use[
"DNN_CPU"]) histDnnCpu->Fill(reader->
EvaluateMVA(
"DNN_CPU method"));
 
      if (Use[
"BDT"          ])   histBdt    ->Fill( reader->
EvaluateMVA( 
"BDT method"           ) );
 
      if (Use[
"BDTG"         ])   histBdtG   ->Fill( reader->
EvaluateMVA( 
"BDTG method"          ) );
 
      if (Use[
"BDTB"         ])   histBdtB   ->Fill( reader->
EvaluateMVA( 
"BDTB method"          ) );
 
      if (Use[
"BDTD"         ])   histBdtD   ->Fill( reader->
EvaluateMVA( 
"BDTD method"          ) );
 
      if (Use[
"BDTF"         ])   histBdtF   ->Fill( reader->
EvaluateMVA( 
"BDTF method"          ) );
 
      if (Use[
"RuleFit"      ])   histRf     ->Fill( reader->
EvaluateMVA( 
"RuleFit method"       ) );
 
      if (Use[
"SVM_Gauss"    ])   histSVMG   ->Fill( reader->
EvaluateMVA( 
"SVM_Gauss method"     ) );
 
      if (Use[
"SVM_Poly"     ])   histSVMP   ->Fill( reader->
EvaluateMVA( 
"SVM_Poly method"      ) );
 
      if (Use[
"SVM_Lin"      ])   histSVML   ->Fill( reader->
EvaluateMVA( 
"SVM_Lin method"       ) );
 
      if (Use[
"FDA_MT"       ])   histFDAMT  ->Fill( reader->
EvaluateMVA( 
"FDA_MT method"        ) );
 
      if (Use[
"FDA_GA"       ])   histFDAGA  ->Fill( reader->
EvaluateMVA( 
"FDA_GA method"        ) );
 
      if (Use[
"Category"     ])   histCat    ->Fill( reader->
EvaluateMVA( 
"Category method"      ) );
 
      if (Use[
"Plugin"       ])   histPBdt   ->Fill( reader->
EvaluateMVA( 
"P_BDT method"         ) );
 
 
      
      if (Use["PDEFoam"]) {
         histPDEFoam   ->Fill( val );
         histPDEFoamErr->Fill( err );
         if (err>1.e-50) histPDEFoamSig->Fill( val/err );
      }
 
      
      if (Use["Fisher"])   {
         probHistFi  ->Fill( reader->
GetProba ( 
"Fisher method" ) );
 
         rarityHistFi->Fill( reader->
GetRarity( 
"Fisher method" ) );
 
      }
   }
 
   
   std::cout << 
"--- End of event loop: "; sw.
Print();
 
 
   
   if (Use[
"CutsGA"]) std::cout << 
"--- Efficiency for CutsGA method: " << 
double(nSelCutsGA)/theTree->
GetEntries()
 
                                << " (for a required signal efficiency of " << effS << ")" << std::endl;
 
   if (Use["CutsGA"]) {
 
      
      
 
      if (mcuts) {
         std::vector<Double_t> cutsMin;
         std::vector<Double_t> cutsMax;
         mcuts->
GetCuts( 0.7, cutsMin, cutsMax );
 
         std::cout << "--- -------------------------------------------------------------" << std::endl;
         std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl;
         for (
UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
 
            std::cout << "... Cut: "
                      << cutsMin[ivar]
                      << " < \""
                      << "\" <= "
                      << cutsMax[ivar] << std::endl;
         }
         std::cout << "--- -------------------------------------------------------------" << std::endl;
      }
   }
 
   
 
   if (Use["Likelihood"   ])   histLk     ->Write();
   if (Use["LikelihoodD"  ])   histLkD    ->Write();
   if (Use["LikelihoodPCA"])   histLkPCA  ->Write();
   if (Use["LikelihoodKDE"])   histLkKDE  ->Write();
   if (Use["LikelihoodMIX"])   histLkMIX  ->Write();
   if (Use["PDERS"        ])   histPD     ->Write();
   if (Use["PDERSD"       ])   histPDD    ->Write();
   if (Use["PDERSPCA"     ])   histPDPCA  ->Write();
   if (Use["KNN"          ])   histKNN    ->Write();
   if (Use["HMatrix"      ])   histHm     ->Write();
   if (Use["Fisher"       ])   histFi     ->Write();
   if (Use["FisherG"      ])   histFiG    ->Write();
   if (Use["BoostedFisher"])   histFiB    ->Write();
   if (Use["LD"           ])   histLD     ->Write();
   if (Use["MLP"          ])   histNn     ->Write();
   if (Use["MLPBFGS"      ])   histNnbfgs ->Write();
   if (Use["MLPBNN"       ])   histNnbnn  ->Write();
   if (Use["CFMlpANN"     ])   histNnC    ->Write();
   if (Use["TMlpANN"      ])   histNnT    ->Write();
   if (Use["DNN_GPU"]) histDnnGpu->Write();
   if (Use["DNN_CPU"]) histDnnCpu->Write();
   if (Use["BDT"          ])   histBdt    ->Write();
   if (Use["BDTG"         ])   histBdtG   ->Write();
   if (Use["BDTB"         ])   histBdtB   ->Write();
   if (Use["BDTD"         ])   histBdtD   ->Write();
   if (Use["BDTF"         ])   histBdtF   ->Write();
   if (Use["RuleFit"      ])   histRf     ->Write();
   if (Use["SVM_Gauss"    ])   histSVMG   ->Write();
   if (Use["SVM_Poly"     ])   histSVMP   ->Write();
   if (Use["SVM_Lin"      ])   histSVML   ->Write();
   if (Use["FDA_MT"       ])   histFDAMT  ->Write();
   if (Use["FDA_GA"       ])   histFDAGA  ->Write();
   if (Use["Category"     ])   histCat    ->Write();
   if (Use["Plugin"       ])   histPBdt   ->Write();
 
   
   if (Use["PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); }
 
   
   if (Use["Fisher"]) { if (probHistFi != 0) probHistFi->Write(); if (rarityHistFi != 0) rarityHistFi->Write(); }
 
   std::cout << "--- Created root file: \"TMVApp.root\" containing the MVA output histograms" << std::endl;
 
   delete reader;
 
   std::cout << "==> TMVAClassificationApplication is done!" << std::endl << std::endl;
}
 
int main( 
int argc, 
char** argv )
 
{
   for (int i=1; i<argc; i++) {
      if(regMethod=="-b" || regMethod=="--batch") continue;
      methodList += regMethod;
   }
   TMVAClassificationApplication(methodList);
   return 0;
}
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
 
R__EXTERN TSystem * gSystem
 
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
 
static Bool_t SetCacheFileDir(ROOT::Internal::TStringView cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
1-D histogram with a float per channel (see TH1 documentation)}
 
const TString & GetInputVar(Int_t i) const
 
Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular ...
 
Double_t GetCuts(Double_t effS, std::vector< Double_t > &cutMin, std::vector< Double_t > &cutMax) const
retrieve cut values for given signal efficiency
 
The Reader class serves to use the MVAs in a specific analysis context.
 
Double_t EvaluateMVA(const std::vector< Float_t > &, const TString &methodTag, Double_t aux=0)
Evaluate a std::vector<float> of input data for a given method The parameter aux is obligatory for th...
 
Double_t GetRarity(const TString &methodTag, Double_t mvaVal=-9999999)
evaluates the MVA's rarity
 
Double_t GetProba(const TString &methodTag, Double_t ap_sig=0.5, Double_t mvaVal=-9999999)
evaluates probability of MVA for given set of input variables
 
MethodCuts * FindCutsMVA(const TString &methodTag)
special function for Cuts to avoid dynamic_casts in ROOT macros, which are not properly handled by CI...
 
IMethod * BookMVA(const TString &methodTag, const TString &weightfile)
read method name from weight file
 
void AddSpectator(const TString &expression, Float_t *)
Add a float spectator or expression to the reader.
 
void AddVariable(const TString &expression, Float_t *)
Add a float variable or expression to the reader.
 
Double_t GetMVAError() const
 
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
 
void Stop()
Stop the stopwatch.
 
void Print(Option_t *option="") const override
Print the real and cpu time passed between the start and stop events.
 
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
 
A TTree represents a columnar dataset.
 
virtual Int_t GetEntry(Long64_t entry, Int_t getall=0)
Read all branches of entry and return total number of bytes read.
 
virtual Int_t SetBranchAddress(const char *bname, void *add, TBranch **ptr=nullptr)
Change branch address, dealing with clone trees properly.
 
virtual Long64_t GetEntries() const
 
create variable transformations