33void TMVAClassificationApplication( 
TString myMethodList = 
"" )
 
   41   std::map<std::string,int> Use;
 
   51   Use[
"Likelihood"]      = 1;
 
   52   Use[
"LikelihoodD"]     = 0; 
 
   53   Use[
"LikelihoodPCA"]   = 1; 
 
   54   Use[
"LikelihoodKDE"]   = 0;
 
   55   Use[
"LikelihoodMIX"]   = 0;
 
   62   Use[
"PDEFoamBoost"]    = 0; 
 
   69   Use[
"BoostedFisher"]   = 0; 
 
  104   Use[
"SVM_Gauss"]       = 0;
 
  108   std::cout << std::endl;
 
  109   std::cout << 
"==> Start TMVAClassificationApplication" << std::endl;
 
  112   if (myMethodList != 
"") {
 
  113      for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
 
  116      for (
UInt_t i=0; i<mlist.size(); i++) {
 
  117         std::string regMethod(mlist[i]);
 
  119         if (Use.find(regMethod) == Use.end()) {
 
  120            std::cout << 
"Method \"" << regMethod
 
  121                      << 
"\" not known in TMVA under this name. Choose among the following:" << std::endl;
 
  122            for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
 
  123               std::cout << it->first << 
" ";
 
  125            std::cout << std::endl;
 
  142   reader->
AddVariable( 
"myvar1 := var1+var2", &var1 );
 
  143   reader->
AddVariable( 
"myvar2 := var1-var2", &var2 );
 
  152   Float_t Category_cat1, Category_cat2, Category_cat3;
 
  153   if (Use[
"Category"]){
 
  155      reader->
AddSpectator( 
"Category_cat1 := var3<=0",             &Category_cat1 );
 
  156      reader->
AddSpectator( 
"Category_cat2 := (var3>0)&&(var4<0)",  &Category_cat2 );
 
  157      reader->
AddSpectator( 
"Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 );
 
  162   TString dir    = 
"dataset/weights/";
 
  163   TString prefix = 
"TMVAClassification";
 
  166   for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
 
  170         reader->
BookMVA( methodName, weightfile );
 
  184   TH1F *histPDEFoam(0);
 
  185   TH1F *histPDEFoamErr(0);
 
  186   TH1F *histPDEFoamSig(0);
 
  214   if (Use[
"Likelihood"])    histLk      = 
new TH1F( 
"MVA_Likelihood",    
"MVA_Likelihood",    nbin, -1, 1 );
 
  215   if (Use[
"LikelihoodD"])   histLkD     = 
new TH1F( 
"MVA_LikelihoodD",   
"MVA_LikelihoodD",   nbin, -1, 0.9999 );
 
  216   if (Use[
"LikelihoodPCA"]) histLkPCA   = 
new TH1F( 
"MVA_LikelihoodPCA", 
"MVA_LikelihoodPCA", nbin, -1, 1 );
 
  217   if (Use[
"LikelihoodKDE"]) histLkKDE   = 
new TH1F( 
"MVA_LikelihoodKDE", 
"MVA_LikelihoodKDE", nbin,  -0.00001, 0.99999 );
 
  218   if (Use[
"LikelihoodMIX"]) histLkMIX   = 
new TH1F( 
"MVA_LikelihoodMIX", 
"MVA_LikelihoodMIX", nbin,  0, 1 );
 
  219   if (Use[
"PDERS"])         histPD      = 
new TH1F( 
"MVA_PDERS",         
"MVA_PDERS",         nbin,  0, 1 );
 
  220   if (Use[
"PDERSD"])        histPDD     = 
new TH1F( 
"MVA_PDERSD",        
"MVA_PDERSD",        nbin,  0, 1 );
 
  221   if (Use[
"PDERSPCA"])      histPDPCA   = 
new TH1F( 
"MVA_PDERSPCA",      
"MVA_PDERSPCA",      nbin,  0, 1 );
 
  222   if (Use[
"KNN"])           histKNN     = 
new TH1F( 
"MVA_KNN",           
"MVA_KNN",           nbin,  0, 1 );
 
  223   if (Use[
"HMatrix"])       histHm      = 
new TH1F( 
"MVA_HMatrix",       
"MVA_HMatrix",       nbin, -0.95, 1.55 );
 
  224   if (Use[
"Fisher"])        histFi      = 
new TH1F( 
"MVA_Fisher",        
"MVA_Fisher",        nbin, -4, 4 );
 
  225   if (Use[
"FisherG"])       histFiG     = 
new TH1F( 
"MVA_FisherG",       
"MVA_FisherG",       nbin, -1, 1 );
 
  226   if (Use[
"BoostedFisher"]) histFiB     = 
new TH1F( 
"MVA_BoostedFisher", 
"MVA_BoostedFisher", nbin, -2, 2 );
 
  227   if (Use[
"LD"])            histLD      = 
new TH1F( 
"MVA_LD",            
"MVA_LD",            nbin, -2, 2 );
 
  228   if (Use[
"MLP"])           histNn      = 
new TH1F( 
"MVA_MLP",           
"MVA_MLP",           nbin, -1.25, 1.5 );
 
  229   if (Use[
"MLPBFGS"])       histNnbfgs  = 
new TH1F( 
"MVA_MLPBFGS",       
"MVA_MLPBFGS",       nbin, -1.25, 1.5 );
 
  230   if (Use[
"MLPBNN"])        histNnbnn   = 
new TH1F( 
"MVA_MLPBNN",        
"MVA_MLPBNN",        nbin, -1.25, 1.5 );
 
  231   if (Use[
"CFMlpANN"])      histNnC     = 
new TH1F( 
"MVA_CFMlpANN",      
"MVA_CFMlpANN",      nbin,  0, 1 );
 
  232   if (Use[
"TMlpANN"])       histNnT     = 
new TH1F( 
"MVA_TMlpANN",       
"MVA_TMlpANN",       nbin, -1.3, 1.3 );
 
  233   if (Use[
"DNN_GPU"]) histDnnGpu = 
new TH1F(
"MVA_DNN_GPU", 
"MVA_DNN_GPU", nbin, -0.1, 1.1);
 
  234   if (Use[
"DNN_CPU"]) histDnnCpu = 
new TH1F(
"MVA_DNN_CPU", 
"MVA_DNN_CPU", nbin, -0.1, 1.1);
 
  235   if (Use[
"BDT"])           histBdt     = 
new TH1F( 
"MVA_BDT",           
"MVA_BDT",           nbin, -0.8, 0.8 );
 
  236   if (Use[
"BDTG"])          histBdtG    = 
new TH1F( 
"MVA_BDTG",          
"MVA_BDTG",          nbin, -1.0, 1.0 );
 
  237   if (Use[
"BDTB"])          histBdtB    = 
new TH1F( 
"MVA_BDTB",          
"MVA_BDTB",          nbin, -1.0, 1.0 );
 
  238   if (Use[
"BDTD"])          histBdtD    = 
new TH1F( 
"MVA_BDTD",          
"MVA_BDTD",          nbin, -0.8, 0.8 );
 
  239   if (Use[
"BDTF"])          histBdtF    = 
new TH1F( 
"MVA_BDTF",          
"MVA_BDTF",          nbin, -1.0, 1.0 );
 
  240   if (Use[
"RuleFit"])       histRf      = 
new TH1F( 
"MVA_RuleFit",       
"MVA_RuleFit",       nbin, -2.0, 2.0 );
 
  241   if (Use[
"SVM_Gauss"])     histSVMG    = 
new TH1F( 
"MVA_SVM_Gauss",     
"MVA_SVM_Gauss",     nbin,  0.0, 1.0 );
 
  242   if (Use[
"SVM_Poly"])      histSVMP    = 
new TH1F( 
"MVA_SVM_Poly",      
"MVA_SVM_Poly",      nbin,  0.0, 1.0 );
 
  243   if (Use[
"SVM_Lin"])       histSVML    = 
new TH1F( 
"MVA_SVM_Lin",       
"MVA_SVM_Lin",       nbin,  0.0, 1.0 );
 
  244   if (Use[
"FDA_MT"])        histFDAMT   = 
new TH1F( 
"MVA_FDA_MT",        
"MVA_FDA_MT",        nbin, -2.0, 3.0 );
 
  245   if (Use[
"FDA_GA"])        histFDAGA   = 
new TH1F( 
"MVA_FDA_GA",        
"MVA_FDA_GA",        nbin, -2.0, 3.0 );
 
  246   if (Use[
"Category"])      histCat     = 
new TH1F( 
"MVA_Category",      
"MVA_Category",      nbin, -2., 2. );
 
  247   if (Use[
"Plugin"])        histPBdt    = 
new TH1F( 
"MVA_PBDT",          
"MVA_BDT",           nbin, -0.8, 0.8 );
 
  250   if (Use[
"PDEFoam"]) {
 
  251      histPDEFoam    = 
new TH1F( 
"MVA_PDEFoam",       
"MVA_PDEFoam",              nbin,  0, 1 );
 
  252      histPDEFoamErr = 
new TH1F( 
"MVA_PDEFoamErr",    
"MVA_PDEFoam error",        nbin,  0, 1 );
 
  253      histPDEFoamSig = 
new TH1F( 
"MVA_PDEFoamSig",    
"MVA_PDEFoam significance", nbin,  0, 10 );
 
  257   TH1F *probHistFi(0), *rarityHistFi(0);
 
  259      probHistFi   = 
new TH1F( 
"MVA_Fisher_Proba",  
"MVA_Fisher_Proba",  nbin, 0, 1 );
 
  260      rarityHistFi = 
new TH1F( 
"MVA_Fisher_Rarity", 
"MVA_Fisher_Rarity", nbin, 0, 1 );
 
  268   TString fname = 
"./tmva_class_example.root";
 
  274      input = 
TFile::Open(
"http://root.cern.ch/files/tmva_class_example.root", 
"CACHEREAD"); 
 
  277      std::cout << 
"ERROR: could not open data file" << std::endl;
 
  280   std::cout << 
"--- TMVAClassificationApp    : Using input file: " << 
input->GetName() << std::endl;
 
  289   std::cout << 
"--- Select signal sample" << std::endl;
 
  298   Int_t    nSelCutsGA = 0;
 
  301   std::vector<Float_t> vecVar(4); 
 
  303   std::cout << 
"--- Processing: " << theTree->
GetEntries() << 
" events" << std::endl;
 
  308      if (ievt%1000 == 0) std::cout << 
"--- ... Processing event: " << ievt << std::endl;
 
  312      var1 = userVar1 + userVar2;
 
  313      var2 = userVar1 - userVar2;
 
  320         if (passed) nSelCutsGA++;
 
  323      if (Use[
"Likelihood"   ])   histLk     ->Fill( reader->
EvaluateMVA( 
"Likelihood method"    ) );
 
  324      if (Use[
"LikelihoodD"  ])   histLkD    ->Fill( reader->
EvaluateMVA( 
"LikelihoodD method"   ) );
 
  325      if (Use[
"LikelihoodPCA"])   histLkPCA  ->Fill( reader->
EvaluateMVA( 
"LikelihoodPCA method" ) );
 
  326      if (Use[
"LikelihoodKDE"])   histLkKDE  ->Fill( reader->
EvaluateMVA( 
"LikelihoodKDE method" ) );
 
  327      if (Use[
"LikelihoodMIX"])   histLkMIX  ->Fill( reader->
EvaluateMVA( 
"LikelihoodMIX method" ) );
 
  328      if (Use[
"PDERS"        ])   histPD     ->Fill( reader->
EvaluateMVA( 
"PDERS method"         ) );
 
  329      if (Use[
"PDERSD"       ])   histPDD    ->Fill( reader->
EvaluateMVA( 
"PDERSD method"        ) );
 
  330      if (Use[
"PDERSPCA"     ])   histPDPCA  ->Fill( reader->
EvaluateMVA( 
"PDERSPCA method"      ) );
 
  331      if (Use[
"KNN"          ])   histKNN    ->Fill( reader->
EvaluateMVA( 
"KNN method"           ) );
 
  332      if (Use[
"HMatrix"      ])   histHm     ->Fill( reader->
EvaluateMVA( 
"HMatrix method"       ) );
 
  333      if (Use[
"Fisher"       ])   histFi     ->Fill( reader->
EvaluateMVA( 
"Fisher method"        ) );
 
  334      if (Use[
"FisherG"      ])   histFiG    ->Fill( reader->
EvaluateMVA( 
"FisherG method"       ) );
 
  335      if (Use[
"BoostedFisher"])   histFiB    ->Fill( reader->
EvaluateMVA( 
"BoostedFisher method" ) );
 
  336      if (Use[
"LD"           ])   histLD     ->Fill( reader->
EvaluateMVA( 
"LD method"            ) );
 
  337      if (Use[
"MLP"          ])   histNn     ->Fill( reader->
EvaluateMVA( 
"MLP method"           ) );
 
  338      if (Use[
"MLPBFGS"      ])   histNnbfgs ->Fill( reader->
EvaluateMVA( 
"MLPBFGS method"       ) );
 
  339      if (Use[
"MLPBNN"       ])   histNnbnn  ->Fill( reader->
EvaluateMVA( 
"MLPBNN method"        ) );
 
  340      if (Use[
"CFMlpANN"     ])   histNnC    ->Fill( reader->
EvaluateMVA( 
"CFMlpANN method"      ) );
 
  341      if (Use[
"TMlpANN"      ])   histNnT    ->Fill( reader->
EvaluateMVA( 
"TMlpANN method"       ) );
 
  342      if (Use[
"DNN_GPU"]) histDnnGpu->Fill(reader->
EvaluateMVA(
"DNN_GPU method"));
 
  343      if (Use[
"DNN_CPU"]) histDnnCpu->Fill(reader->
EvaluateMVA(
"DNN_CPU method"));
 
  344      if (Use[
"BDT"          ])   histBdt    ->Fill( reader->
EvaluateMVA( 
"BDT method"           ) );
 
  345      if (Use[
"BDTG"         ])   histBdtG   ->Fill( reader->
EvaluateMVA( 
"BDTG method"          ) );
 
  346      if (Use[
"BDTB"         ])   histBdtB   ->Fill( reader->
EvaluateMVA( 
"BDTB method"          ) );
 
  347      if (Use[
"BDTD"         ])   histBdtD   ->Fill( reader->
EvaluateMVA( 
"BDTD method"          ) );
 
  348      if (Use[
"BDTF"         ])   histBdtF   ->Fill( reader->
EvaluateMVA( 
"BDTF method"          ) );
 
  349      if (Use[
"RuleFit"      ])   histRf     ->Fill( reader->
EvaluateMVA( 
"RuleFit method"       ) );
 
  350      if (Use[
"SVM_Gauss"    ])   histSVMG   ->Fill( reader->
EvaluateMVA( 
"SVM_Gauss method"     ) );
 
  351      if (Use[
"SVM_Poly"     ])   histSVMP   ->Fill( reader->
EvaluateMVA( 
"SVM_Poly method"      ) );
 
  352      if (Use[
"SVM_Lin"      ])   histSVML   ->Fill( reader->
EvaluateMVA( 
"SVM_Lin method"       ) );
 
  353      if (Use[
"FDA_MT"       ])   histFDAMT  ->Fill( reader->
EvaluateMVA( 
"FDA_MT method"        ) );
 
  354      if (Use[
"FDA_GA"       ])   histFDAGA  ->Fill( reader->
EvaluateMVA( 
"FDA_GA method"        ) );
 
  355      if (Use[
"Category"     ])   histCat    ->Fill( reader->
EvaluateMVA( 
"Category method"      ) );
 
  356      if (Use[
"Plugin"       ])   histPBdt   ->Fill( reader->
EvaluateMVA( 
"P_BDT method"         ) );
 
  359      if (Use[
"PDEFoam"]) {
 
  362         histPDEFoam   ->Fill( val );
 
  363         histPDEFoamErr->Fill( err );
 
  364         if (err>1.e-50) histPDEFoamSig->Fill( val/err );
 
  369         probHistFi  ->Fill( reader->
GetProba ( 
"Fisher method" ) );
 
  370         rarityHistFi->Fill( reader->
GetRarity( 
"Fisher method" ) );
 
  376   std::cout << 
"--- End of event loop: "; sw.
Print();
 
  379   if (Use[
"CutsGA"]) std::cout << 
"--- Efficiency for CutsGA method: " << 
double(nSelCutsGA)/theTree->
GetEntries()
 
  380                                << 
" (for a required signal efficiency of " << effS << 
")" << std::endl;
 
  389         std::vector<Double_t> cutsMin;
 
  390         std::vector<Double_t> cutsMax;
 
  391         mcuts->
GetCuts( 0.7, cutsMin, cutsMax );
 
  392         std::cout << 
"--- -------------------------------------------------------------" << std::endl;
 
  393         std::cout << 
"--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl;
 
  394         for (
UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
 
  395            std::cout << 
"... Cut: " 
  400                      << cutsMax[ivar] << std::endl;
 
  402         std::cout << 
"--- -------------------------------------------------------------" << std::endl;
 
  409   if (Use[
"Likelihood"   ])   histLk     ->Write();
 
  410   if (Use[
"LikelihoodD"  ])   histLkD    ->Write();
 
  411   if (Use[
"LikelihoodPCA"])   histLkPCA  ->Write();
 
  412   if (Use[
"LikelihoodKDE"])   histLkKDE  ->Write();
 
  413   if (Use[
"LikelihoodMIX"])   histLkMIX  ->Write();
 
  414   if (Use[
"PDERS"        ])   histPD     ->Write();
 
  415   if (Use[
"PDERSD"       ])   histPDD    ->Write();
 
  416   if (Use[
"PDERSPCA"     ])   histPDPCA  ->Write();
 
  417   if (Use[
"KNN"          ])   histKNN    ->Write();
 
  418   if (Use[
"HMatrix"      ])   histHm     ->Write();
 
  419   if (Use[
"Fisher"       ])   histFi     ->Write();
 
  420   if (Use[
"FisherG"      ])   histFiG    ->Write();
 
  421   if (Use[
"BoostedFisher"])   histFiB    ->Write();
 
  422   if (Use[
"LD"           ])   histLD     ->Write();
 
  423   if (Use[
"MLP"          ])   histNn     ->Write();
 
  424   if (Use[
"MLPBFGS"      ])   histNnbfgs ->Write();
 
  425   if (Use[
"MLPBNN"       ])   histNnbnn  ->Write();
 
  426   if (Use[
"CFMlpANN"     ])   histNnC    ->Write();
 
  427   if (Use[
"TMlpANN"      ])   histNnT    ->Write();
 
  428   if (Use[
"DNN_GPU"]) histDnnGpu->Write();
 
  429   if (Use[
"DNN_CPU"]) histDnnCpu->Write();
 
  430   if (Use[
"BDT"          ])   histBdt    ->Write();
 
  431   if (Use[
"BDTG"         ])   histBdtG   ->Write();
 
  432   if (Use[
"BDTB"         ])   histBdtB   ->Write();
 
  433   if (Use[
"BDTD"         ])   histBdtD   ->Write();
 
  434   if (Use[
"BDTF"         ])   histBdtF   ->Write();
 
  435   if (Use[
"RuleFit"      ])   histRf     ->Write();
 
  436   if (Use[
"SVM_Gauss"    ])   histSVMG   ->Write();
 
  437   if (Use[
"SVM_Poly"     ])   histSVMP   ->Write();
 
  438   if (Use[
"SVM_Lin"      ])   histSVML   ->Write();
 
  439   if (Use[
"FDA_MT"       ])   histFDAMT  ->Write();
 
  440   if (Use[
"FDA_GA"       ])   histFDAGA  ->Write();
 
  441   if (Use[
"Category"     ])   histCat    ->Write();
 
  442   if (Use[
"Plugin"       ])   histPBdt   ->Write();
 
  445   if (Use[
"PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); }
 
  448   if (Use[
"Fisher"]) { 
if (probHistFi != 0) probHistFi->Write(); 
if (rarityHistFi != 0) rarityHistFi->Write(); }
 
  451   std::cout << 
"--- Created root file: \"TMVApp.root\" containing the MVA output histograms" << std::endl;
 
  455   std::cout << 
"==> TMVAClassificationApplication is done!" << std::endl << std::endl;
 
  458int main( 
int argc, 
char** argv )
 
  461   for (
int i=1; i<argc; i++) {
 
  463      if(regMethod==
"-b" || regMethod==
"--batch") 
continue;
 
  465      methodList += regMethod;
 
  467   TMVAClassificationApplication(methodList);
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
 
R__EXTERN TSystem * gSystem
 
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
 
static Bool_t SetCacheFileDir(ROOT::Internal::TStringView cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
1-D histogram with a float per channel (see TH1 documentation)}
 
const TString & GetInputVar(Int_t i) const
 
Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular ...
 
Double_t GetCuts(Double_t effS, std::vector< Double_t > &cutMin, std::vector< Double_t > &cutMax) const
retrieve cut values for given signal efficiency
 
The Reader class serves to use the MVAs in a specific analysis context.
 
Double_t EvaluateMVA(const std::vector< Float_t > &, const TString &methodTag, Double_t aux=0)
Evaluate a std::vector<float> of input data for a given method The parameter aux is obligatory for th...
 
Double_t GetRarity(const TString &methodTag, Double_t mvaVal=-9999999)
evaluates the MVA's rarity
 
Double_t GetProba(const TString &methodTag, Double_t ap_sig=0.5, Double_t mvaVal=-9999999)
evaluates probability of MVA for given set of input variables
 
MethodCuts * FindCutsMVA(const TString &methodTag)
special function for Cuts to avoid dynamic_casts in ROOT macros, which are not properly handled by CI...
 
IMethod * BookMVA(const TString &methodTag, const TString &weightfile)
read method name from weight file
 
void AddSpectator(const TString &expression, Float_t *)
Add a float spectator or expression to the reader.
 
void AddVariable(const TString &expression, Float_t *)
Add a float variable or expression to the reader.
 
Double_t GetMVAError() const
 
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
 
void Stop()
Stop the stopwatch.
 
void Print(Option_t *option="") const override
Print the real and cpu time passed between the start and stop events.
 
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
 
A TTree represents a columnar dataset.
 
virtual Int_t GetEntry(Long64_t entry, Int_t getall=0)
Read all branches of entry and return total number of bytes read.
 
virtual Int_t SetBranchAddress(const char *bname, void *add, TBranch **ptr=nullptr)
Change branch address, dealing with clone trees properly.
 
virtual Long64_t GetEntries() const
 
create variable transformations