Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
StandardBayesianNumericalDemo.C File Reference

Detailed Description

View in nbviewer Open in SWAN
Standard demo of the numerical Bayesian calculator

This is a standard demo that can be used with any ROOT file prepared in the standard way. You specify:

  • name for input ROOT file
  • name of workspace inside ROOT file that holds model and data
  • name of ModelConfig that specifies details for calculator tools
  • name of dataset

With default parameters the macro will attempt to run the standard hist2workspace example and read the ROOT file that it produces.

The actual heart of the demo is only about 10 lines long.

The BayesianCalculator is based on Bayes's theorem and performs the integration using ROOT's numeric integration utilities

[#1] INFO:ObjectHandling -- RooWorkspace::import(combined) importing RooUniform::prior
[#1] INFO:Minimization -- p.d.f. provides expected number of events, including extended term in likelihood.
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (alpha_syst2Constraint,alpha_syst3Constraint,gamma_stat_channel1_bin_0_constraint,gamma_stat_channel1_bin_1_constraint)
[#1] INFO:Minimization -- The following global observables have been defined and their values are taken from the model: (nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
RooAbsTestStatistic::initSimMode: creating slave calculator #0 for state channel1 (2 dataset entries)
[#1] INFO:Fitting -- RooAbsTestStatistic::initSimMode: created 1 slave calculators.
[#1] INFO:Eval -- BayesianCalculator::GetPosteriorFunction : nll value 15.6103 poi value = 1
[#1] INFO:Eval -- BayesianCalculator::GetPosteriorFunction : minimum of NLL vs POI for POI = 1.12121 min NLL = 15.5792
[#0] WARNING:InputArguments -- RooRealBinding: The function prior does not depend on the parameter alpha_syst2. Note that passing copies of the parameters is not supported.
[#0] WARNING:InputArguments -- RooRealBinding: The function prior does not depend on the parameter alpha_syst3. Note that passing copies of the parameters is not supported.
[#0] WARNING:InputArguments -- RooRealBinding: The function prior does not depend on the parameter gamma_stat_channel1_bin_0. Note that passing copies of the parameters is not supported.
[#0] WARNING:InputArguments -- RooRealBinding: The function prior does not depend on the parameter gamma_stat_channel1_bin_1. Note that passing copies of the parameters is not supported.
[#1] INFO:InputArguments -- BayesianCalculator:GetInterval Compute the interval from the posterior cdf
[#0] WARNING:InputArguments -- RooRealBinding: The function prior does not depend on the parameter alpha_syst2. Note that passing copies of the parameters is not supported.
[#0] WARNING:InputArguments -- RooRealBinding: The function prior does not depend on the parameter alpha_syst3. Note that passing copies of the parameters is not supported.
[#0] WARNING:InputArguments -- RooRealBinding: The function prior does not depend on the parameter gamma_stat_channel1_bin_0. Note that passing copies of the parameters is not supported.
[#0] WARNING:InputArguments -- RooRealBinding: The function prior does not depend on the parameter gamma_stat_channel1_bin_1. Note that passing copies of the parameters is not supported.
[#1] INFO:NumericIntegration -- PosteriorCdfFunction - integral of posterior = 0.0560849 +/- 0.000423427
[#0] WARNING:Eval -- BayesianCalculator::GetInterval : 315 errors reported in evaluating log-likelihood function
[#1] INFO:Eval -- BayesianCalculator::GetInterval - found a valid interval : [0.170773 , 2.33979 ]
>>>> RESULT : 95% interval on SigXsecOverSM is : [0.170773, 2.33979]
#include "TFile.h"
#include "TROOT.h"
#include "RooWorkspace.h"
#include "RooAbsData.h"
#include "RooRealVar.h"
#include "RooUniform.h"
#include "RooPlot.h"
#include "TSystem.h"
#include <cassert>
using namespace RooFit;
using namespace RooStats;
struct BayesianNumericalOptions {
double confLevel = 0.95; // interval CL
TString integrationType = ""; // integration Type (default is adaptive (numerical integration)
// possible values are "TOYMC" (toy MC integration, work when nuisances have a constraints pdf)
// "VEGAS" , "MISER", or "PLAIN" (these are all possible MC integration)
int nToys =
10000; // number of toys used for the MC integrations - for Vegas should be probably set to an higher value
bool scanPosterior =
false; // flag to compute interval by scanning posterior (it is more robust but maybe less precise)
bool plotPosterior = false; // plot posterior function after having computed the interval
int nScanPoints = 50; // number of points for scanning the posterior (if scanPosterior = false it is used only for
// plotting). Use by default a low value to speed-up tutorial
int intervalType = 1; // type of interval (0 is shortest, 1 central, 2 upper limit)
double maxPOI = -999; // force a different value of POI for doing the scan (default is given value)
double nSigmaNuisance = -1; // force integration of nuisance parameters to be within nSigma of their error (do first
// a model fit to find nuisance error)
};
BayesianNumericalOptions optBayes;
void StandardBayesianNumericalDemo(const char *infile = "", const char *workspaceName = "combined",
const char *modelConfigName = "ModelConfig", const char *dataName = "obsData")
{
// option definitions
double confLevel = optBayes.confLevel;
TString integrationType = optBayes.integrationType;
int nToys = optBayes.nToys;
bool scanPosterior = optBayes.scanPosterior;
bool plotPosterior = optBayes.plotPosterior;
int nScanPoints = optBayes.nScanPoints;
int intervalType = optBayes.intervalType;
int maxPOI = optBayes.maxPOI;
double nSigmaNuisance = optBayes.nSigmaNuisance;
// -------------------------------------------------------
// First part is just to access a user-defined file
// or create the standard example file if it doesn't exist
const char *filename = "";
if (!strcmp(infile, "")) {
filename = "results/example_combined_GaussExample_model.root";
bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
// if file does not exists generate with histfactory
if (!fileExist) {
#ifdef _WIN32
cout << "HistFactory file cannot be generated on Windows - exit" << endl;
return;
#endif
// Normally this would be run on the command line
cout << "will run standard hist2workspace example" << endl;
gROOT->ProcessLine(".! prepareHistFactory .");
gROOT->ProcessLine(".! hist2workspace config/example.xml");
cout << "\n\n---------------------" << endl;
cout << "Done creating example input" << endl;
cout << "---------------------\n\n" << endl;
}
} else
filename = infile;
// Try to open the file
// if input file was specified byt not found, quit
if (!file) {
cout << "StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
return;
}
// -------------------------------------------------------
// Tutorial starts here
// -------------------------------------------------------
// get the workspace out of the file
RooWorkspace *w = (RooWorkspace *)file->Get(workspaceName);
if (!w) {
cout << "workspace not found" << endl;
return;
}
// get the modelConfig out of the file
ModelConfig *mc = (ModelConfig *)w->obj(modelConfigName);
// get the modelConfig out of the file
RooAbsData *data = w->data(dataName);
// make sure ingredients are found
if (!data || !mc) {
w->Print();
cout << "data or ModelConfig was not found" << endl;
return;
}
// ------------------------------------------
// create and use the BayesianCalculator
// to find and plot the 95% credible interval
// on the parameter of interest as specified
// in the model config
// before we do that, we must specify our prior
// it belongs in the model config, but it may not have
// been specified
RooUniform prior("prior", "", *mc->GetParametersOfInterest());
w->import(prior);
mc->SetPriorPdf(*w->pdf("prior"));
// do without systematics
// mc->SetNuisanceParameters(RooArgSet() );
if (nSigmaNuisance > 0) {
RooAbsPdf *pdf = mc->GetPdf();
assert(pdf);
std::unique_ptr<RooFitResult> res{
res->Print();
for (int i = 0; i < nuisPar.getSize(); ++i) {
RooRealVar *v = dynamic_cast<RooRealVar *>(&nuisPar[i]);
assert(v);
v->setMin(TMath::Max(v->getMin(), v->getVal() - nSigmaNuisance * v->getError()));
v->setMax(TMath::Min(v->getMax(), v->getVal() + nSigmaNuisance * v->getError()));
std::cout << "setting interval for nuisance " << v->GetName() << " : [ " << v->getMin() << " , "
<< v->getMax() << " ]" << std::endl;
}
}
BayesianCalculator bayesianCalc(*data, *mc);
bayesianCalc.SetConfidenceLevel(confLevel); // 95% interval
// default of the calculator is central interval. here use shortest , central or upper limit depending on input
// doing a shortest interval might require a longer time since it requires a scan of the posterior function
if (intervalType == 0)
bayesianCalc.SetShortestInterval(); // for shortest interval
if (intervalType == 1)
bayesianCalc.SetLeftSideTailFraction(0.5); // for central interval
if (intervalType == 2)
bayesianCalc.SetLeftSideTailFraction(0.); // for upper limit
if (!integrationType.IsNull()) {
bayesianCalc.SetIntegrationType(integrationType); // set integrationType
bayesianCalc.SetNumIters(nToys); // set number of iterations (i.e. number of toys for MC integrations)
}
// in case of toyMC make a nuisance pdf
if (integrationType.Contains("TOYMC")) {
RooAbsPdf *nuisPdf = RooStats::MakeNuisancePdf(*mc, "nuisance_pdf");
cout << "using TOYMC integration: make nuisance pdf from the model " << std::endl;
nuisPdf->Print();
bayesianCalc.ForceNuisancePdf(*nuisPdf);
scanPosterior = true; // for ToyMC the posterior is scanned anyway so used given points
}
// compute interval by scanning the posterior function
if (scanPosterior)
bayesianCalc.SetScanOfPosterior(nScanPoints);
if (maxPOI != -999 && maxPOI > poi->getMin())
poi->setMax(maxPOI);
SimpleInterval *interval = bayesianCalc.GetInterval();
// print out the interval on the first Parameter of Interest
cout << "\n>>>> RESULT : " << confLevel * 100 << "% interval on " << poi->GetName() << " is : ["
<< interval->LowerLimit() << ", " << interval->UpperLimit() << "] " << endl;
// end in case plotting is not requested
if (!plotPosterior)
return;
// make a plot
// since plotting may take a long time (it requires evaluating
// the posterior in many points) this command will speed up
// by reducing the number of points to plot - do 50
// ignore errors of PDF if is zero
cout << "\nDrawing plot of posterior function....." << endl;
// always plot using numer of scan points
bayesianCalc.SetScanOfPosterior(nScanPoints);
RooPlot *plot = bayesianCalc.GetPosteriorPlot();
plot->Draw();
}
PrintLevel
Definition RooMinuit.h:6
winID h TVirtualViewer3D TVirtualGLPainter char TVirtualGLPainter plot
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
#define gROOT
Definition TROOT.h:405
R__EXTERN TSystem * gSystem
Definition TSystem.h:560
static const std::string & DefaultMinimizerType()
void Print(Option_t *options=nullptr) const override
Print the object to the defaultPrintStream().
Definition RooAbsArg.h:318
RooAbsArg * first() const
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition RooAbsData.h:59
virtual RooFit::OwningPtr< RooFitResult > fitTo(RooAbsData &data, const RooLinkedList &cmdList={})
Fit PDF to given dataset.
virtual double getMin(const char *name=nullptr) const
Get minimum of currently defined range.
static void setEvalErrorLoggingMode(ErrorLoggingMode m)
Set evaluation error logging mode.
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition RooArgList.h:22
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition RooPlot.h:43
RooRealVar represents a variable that can be changed from the outside.
Definition RooRealVar.h:40
void setMax(const char *name, double value)
Set maximum of name range to given value.
BayesianCalculator is a concrete implementation of IntervalCalculator, providing the computation of a...
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Definition ModelConfig.h:35
virtual void SetPriorPdf(const RooAbsPdf &pdf)
Set the Prior Pdf, add to the workspace if not already there.
Definition ModelConfig.h:94
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return nullptr if not existing)
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return nullptr if not existing)
RooAbsPdf * GetPdf() const
get model PDF (return nullptr if pdf has not been specified or does not exist)
SimpleInterval is a concrete implementation of the ConfInterval interface.
virtual double UpperLimit()
return the interval upper limit
virtual double LowerLimit()
return the interval lower limit
Flat p.d.f.
Definition RooUniform.h:24
The RooWorkspace is a persistable container for RooFit projects.
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition TFile.h:51
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition TFile.cxx:4053
const char * GetName() const override
Returns name of object.
Definition TNamed.h:47
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
Definition TObject.cxx:274
Basic string class.
Definition TString.h:139
Bool_t IsNull() const
Definition TString.h:418
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition TString.h:636
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition TSystem.cxx:1299
RooCmdArg Minimizer(const char *type, const char *alg=nullptr)
RooCmdArg Hesse(bool flag=true)
RooCmdArg Save(bool flag=true)
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Definition Common.h:18
Namespace for the RooStats classes.
Definition Asimov.h:19
RooAbsPdf * MakeNuisancePdf(RooAbsPdf &pdf, const RooArgSet &observables, const char *name)
extract constraint terms from pdf
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
Definition TMathBase.h:250
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Definition TMathBase.h:198
Definition file.py:1
Author
Kyle Cranmer

Definition in file StandardBayesianNumericalDemo.C.