11#ifndef ROOSTATS_BayesianCalculator 
   12#define ROOSTATS_BayesianCalculator 
   48                          const RooArgSet* nuisanceParameters = 
nullptr );
 
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
 
#define ClassDefOverride(name, id)
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
Interface (abstract class) for generic functions objects of one-dimension Provides a method to evalua...
 
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
 
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
 
RooAbsData is the common abstract base class for binned and unbinned datasets.
 
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
 
RooArgSet is a container object that can hold multiple RooAbsArg objects.
 
A RooPlot is a plot frame and a container for graphics objects within that frame.
 
BayesianCalculator is a concrete implementation of IntervalCalculator, providing the computation of a...
 
void SetShortestInterval()
set the Bayesian calculator to compute the shortest interval (default is central interval) to switch ...
 
void SetTestSize(double size) override
set the size of the test (rate of Type I error) ( Eg. 0.05 for a 95% Confidence Interval)
 
void SetBrfPrecision(double precision)
set the precision of the Root Finder
 
void ForceNuisancePdf(RooAbsPdf &pdf)
 
void SetConfidenceLevel(double cl) override
set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval)
 
ROOT::Math::IGenFunction * fPosteriorFunction
function representing the posterior
 
RooAbsReal * fLikelihood
internal pointer to likelihood function
 
virtual void SetConditionalObservables(const RooArgSet &set)
set the conditional observables which will be used when creating the NLL so the pdf's will not be nor...
 
double fNLLMin
minimum value of Nll
 
int fNumIterations
number of iterations (when using ToyMC)
 
RooAbsPdf * GetPosteriorPdf() const
return posterior pdf (object is managed by the user)
 
RooAbsData * fData
data set
 
RooPlot * GetPosteriorPlot(bool norm=false, double precision=0.01) const
get the plot with option to get it normalized
 
int fNScanBins
number of bins to scan, if = -1 no scan is done (default)
 
void ClearAll() const
clear all cached pdf objects
 
void SetScanOfPosterior(int nbin=100)
use directly the approximate posterior function obtained by binning it in nbins by default the cdf is...
 
void ComputeShortestInterval() const
compute the shortest interval from the histogram representing the posterior
 
RooAbsPdf * fNuisancePdf
nuisance pdf (needed when using nuisance sampling technique)
 
RooArgSet fConditionalObs
conditional observables
 
double fBrfPrecision
root finder precision
 
RooAbsReal * fIntegratedLikelihood
integrated likelihood function, i.e - unnormalized posterior function
 
void ApproximatePosterior() const
approximate posterior in nbins using a TF1 scan the poi values and evaluate the posterior at each poi...
 
double fSize
size used for getting the interval
 
void SetData(RooAbsData &data) override
Set the DataSet ( add to the workspace if not already there ?)
 
RooArgSet fNuisanceParameters
nuisance parameters
 
double fLeftSideFraction
fraction of probability content on left side of interval
 
RooArgSet fGlobalObs
global observables
 
virtual void SetNuisanceParameters(const RooArgSet &set)
specify the nuisance parameters (eg. the rest of the parameters)
 
double GetMode() const
return the mode (most probable value of the posterior function)
 
void SetLeftSideTailFraction(double leftSideFraction)
set the fraction of probability content on the left tail Central limits use 0.5 (default case) for up...
 
RooAbsPdf * fPdf
model pdf (could contain the nuisance pdf as constraint term)
 
virtual void SetGlobalObservables(const RooArgSet &set)
set the global observables which will be used when creating the NLL so the constraint pdf's will be n...
 
virtual void SetNumIters(Int_t numIters)
set the number of iterations when running a MC integration algorithm If not set use default algorithm...
 
double Size() const override
Get the size of the test (eg. rate of Type I error)
 
SimpleInterval * GetInterval() const override
compute the interval.
 
RooAbsPdf * fProductPdf
internal pointer to model * prior
 
virtual void SetPriorPdf(RooAbsPdf &pdf)
Set only the Prior Pdf.
 
TF1 * fApproxPosterior
TF1 representing the scanned posterior function.
 
RooAbsReal * GetPosteriorFunction() const
return posterior function (object is managed by the BayesianCalculator class)
 
virtual void SetParameters(const RooArgSet &set)
specify the parameters of interest in the interval
 
void SetIntegrationType(const char *type)
set the integration type (possible type are) :
 
RooAbsPdf * fPosteriorPdf
normalized (on the poi) posterior pdf
 
double fUpper
upper interval bound
 
double fLower
computer lower interval bound
 
TH1 * GetPosteriorHistogram() const
return the approximate posterior as histogram (TH1 object). Note the object is managed by the Bayesia...
 
void ComputeIntervalFromApproxPosterior(double c1, double c2) const
compute the interval using the approximate posterior function
 
BayesianCalculator()
constructor
 
void SetModel(const ModelConfig &model) override
set the model via the ModelConfig
 
RooAbsPdf * fPriorPdf
prior pdf (typically for the POI)
 
std::unique_ptr< RooAbsReal > fLogLike
internal pointer to log likelihood function
 
double ConfidenceLevel() const override
Get the Confidence level for the test.
 
~BayesianCalculator() override
destructor
 
void ComputeIntervalUsingRooFit(double c1, double c2) const
internal function compute the interval using RooFit
 
void ComputeIntervalFromCdf(double c1, double c2) const
internal function compute the interval using Cdf integration
 
IntervalCalculator is an interface class for a tools which produce RooStats ConfIntervals.
 
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
 
SimpleInterval is a concrete implementation of the ConfInterval interface.
 
TH1 is the base class of all histogram classes in ROOT.
 
The TNamed class is the base class for all named ROOT classes.
 
RooStats::ModelConfig ModelConfig
 
Namespace for the RooStats classes.