Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
MethodRSVM.h
Go to the documentation of this file.
1// @(#)root/tmva/rmva $Id$
2// Author: Omar Zapata,Lorenzo Moneta, Sergei Gleyzer 2015
3
4/**********************************************************************************
5 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6 * Package: TMVA *
7 * Class : RMethodRSVM *
8 * *
9 * Description: *
10 * R´s Package RSVM method based on ROOTR *
11 * *
12 **********************************************************************************/
13
14#ifndef ROOT_TMVA_RMethodRSVM
15#define ROOT_TMVA_RMethodRSVM
16
17//////////////////////////////////////////////////////////////////////////
18// //
19// RMethodRSVM //
20// //
21// //
22//////////////////////////////////////////////////////////////////////////
23
24#include "TMVA/RMethodBase.h"
25#include <vector>
26
27namespace TMVA {
28
29 class Factory; // DSMTEST
30 class Reader; // DSMTEST
31 class DataSetManager; // DSMTEST
32 class Types;
33 class MethodRSVM : public RMethodBase {
34
35 public :
36
37 // constructors
38 MethodRSVM(const TString &jobName,
39 const TString &methodTitle,
40 DataSetInfo &theData,
41 const TString &theOption = "");
42
44 const TString &theWeightFile);
45
46
47 ~MethodRSVM(void);
48 void Train();
49 // options treatment
50 void Init();
51 void DeclareOptions();
52 void ProcessOptions();
53 // create ranking
55 {
56 return nullptr; // = 0;
57 }
58
59
60 Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets);
61
62 // performs classifier testing
63 virtual void TestClassification();
64
65
66 Double_t GetMvaValue(Double_t *errLower = nullptr, Double_t *errUpper = nullptr);
67
69 // the actual "weights"
70 virtual void AddWeightsXMLTo(void * /*parent*/) const {} // = 0;
71 virtual void ReadWeightsFromXML(void * /*wghtnode*/) {} // = 0;
72 virtual void ReadWeightsFromStream(std::istream &) {} //= 0; // backward compatibility
73 void ReadModelFromFile();
74
75 // signal/background classification response for all current set of data
76 virtual std::vector<Double_t> GetMvaValues(Long64_t firstEvt = 0, Long64_t lastEvt = -1, Bool_t logProgress = false);
77
78 private :
80 friend class Factory; // DSMTEST
81 friend class Reader; // DSMTEST
82 protected:
84 std::vector<Float_t> fProbResultForTrainSig;
85 std::vector<Float_t> fProbResultForTestSig;
86
87 //Booking options
88 Bool_t fScale;//A logical vector indicating the variables to be scaled. If
89 //‘scale’ is of length 1, the value is recycled as many times
90 //as needed. Per default, data are scaled internally (both ‘x’
91 //and ‘y’ variables) to zero mean and unit variance. The center
92 //and scale values are returned and used for later predictions.
93 TString fType;//‘svm’ can be used as a classification machine, as a
94 //regression machine, or for novelty detection. Depending of
95 //whether ‘y’ is a factor or not, the default setting for
96 //‘type’ is ‘C-classification’ or ‘eps-regression’,
97 //respectively, but may be overwritten by setting an explicit value.
98 //Valid options are:
99 // - ‘C-classification’
100 // - ‘nu-classification’
101 // - ‘one-classification’ (for novelty detection)
102 // - ‘eps-regression’
103 // - ‘nu-regression’
104 TString fKernel;//the kernel used in training and predicting. You might
105 //consider changing some of the following parameters, depending on the kernel type.
106 //linear: u'*v
107 //polynomial: (gamma*u'*v + coef0)^degree
108 //radial basis: exp(-gamma*|u-v|^2)
109 //sigmoid: tanh(gamma*u'*v + coef0)
110 Int_t fDegree;//parameter needed for kernel of type ‘polynomial’ (default: 3)
111 Float_t fGamma;//parameter needed for all kernels except ‘linear’ (default: 1/(data dimension))
112 Float_t fCoef0;//parameter needed for kernels of type ‘polynomial’ and ‘sigmoid’ (default: 0)
113 Float_t fCost;//cost of constraints violation (default: 1)-it is the
114 //‘C’-constant of the regularization term in the Lagrange formulation.
115 Float_t fNu;//parameter needed for ‘nu-classification’, ‘nu-regression’, and ‘one-classification’
116 Float_t fCacheSize;//cache memory in MB (default 40)
117 Float_t fTolerance;//tolerance of termination criterion (default: 0.001)
118 Float_t fEpsilon;//epsilon in the insensitive-loss function (default: 0.1)
119 Bool_t fShrinking;//option whether to use the shrinking-heuristics (default: ‘TRUE’)
120 Float_t fCross;//if a integer value k>0 is specified, a k-fold cross
121 //validation on the training data is performed to assess the
122 //quality of the model: the accuracy rate for classification
123 //and the Mean Squared Error for regression
124 Bool_t fProbability;//logical indicating whether the model should allow for probability predictions.
125 Bool_t fFitted;//logical indicating whether the fitted values should be computed and included in the model or not (default: ‘TRUE’)
126
132 // get help message text
133 void GetHelpMessage() const;
134
136 };
137} // namespace TMVA
138#endif
bool Bool_t
Definition RtypesCore.h:63
unsigned int UInt_t
Definition RtypesCore.h:46
float Float_t
Definition RtypesCore.h:57
double Double_t
Definition RtypesCore.h:59
long long Long64_t
Definition RtypesCore.h:80
#define ClassDef(name, id)
Definition Rtypes.h:337
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
This is a class to pass functions from ROOT to R.
This is a class to get ROOT's objects from R's objects.
Definition TRObject.h:70
Class that contains all the data information.
Definition DataSetInfo.h:62
Class that contains all the data information.
This is the main MVA steering class.
Definition Factory.h:80
virtual void ReadWeightsFromStream(std::istream &)=0
virtual void ReadWeightsFromXML(void *)
Definition MethodRSVM.h:71
virtual std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
std::vector< Float_t > fProbResultForTrainSig
Definition MethodRSVM.h:84
virtual void TestClassification()
initialization
ROOT::R::TRFunctionImport asfactor
Definition MethodRSVM.h:130
static Bool_t IsModuleLoaded
Definition MethodRSVM.h:127
virtual void ReadWeightsFromStream(std::istream &)
Definition MethodRSVM.h:72
Double_t GetMvaValue(Double_t *errLower=nullptr, Double_t *errUpper=nullptr)
ROOT::R::TRObject * fModel
Definition MethodRSVM.h:131
std::vector< Float_t > fProbResultForTestSig
Definition MethodRSVM.h:85
ROOT::R::TRFunctionImport svm
Definition MethodRSVM.h:128
DataSetManager * fDataSetManager
Definition MethodRSVM.h:79
const Ranking * CreateRanking()
Definition MethodRSVM.h:54
void GetHelpMessage() const
virtual void AddWeightsXMLTo(void *) const
Definition MethodRSVM.h:70
ROOT::R::TRFunctionImport predict
Definition MethodRSVM.h:129
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
Ranking for variables in method (implementation)
Definition Ranking.h:48
The Reader class serves to use the MVAs in a specific analysis context.
Definition Reader.h:64
Basic string class.
Definition TString.h:139
create variable transformations