30#ifndef ROOT_TMVA_MethodDNN 
   31#define ROOT_TMVA_MethodDNN 
   86   using LayoutVector_t   = std::vector<std::pair<int, DNN::EActivationFunction>>;
 
  182   std::stringstream matrixStringStream(
"");
 
  183   matrixStringStream.precision( 16 );
 
  185   for (
size_t i = 0; i < (size_t) X.
GetNrows(); i++)
 
  187      for (
size_t j = 0; j < (size_t) X.
GetNcols(); j++)
 
  189         matrixStringStream << std::scientific << X(i,j) << 
" ";
 
  192   std::string s = matrixStringStream.str();
 
  211   std::stringstream matrixStringStream(matrixString);
 
  213   for (
size_t i = 0; i < rows; i++)
 
  215      for (
size_t j = 0; j < cols; j++)
 
  217         matrixStringStream >> X(i,j);
 
#define ClassDef(name, id)
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
Generic neural network class.
 
The reference architecture class.
 
TMatrixT< AReal > Matrix_t
 
Class that contains all the data information.
 
Virtual base Class for all MVA method.
 
virtual void ReadWeightsFromStream(std::istream &)=0
 
Deep Neural Network Implementation.
 
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
 
typename Architecture_t::Scalar_t Scalar_t
 
virtual const std::vector< Float_t > & GetMulticlassValues()
 
UInt_t GetNumValidationSamples()
 
void ReadWeightsFromXML(void *wghtnode)
 
std::vector< std::map< TString, TString > > KeyValueVector_t
 
typename Architecture_t::Matrix_t Matrix_t
 
TString fTrainingStrategyString
 
KeyValueVector_t fSettings
 
void ReadWeightsFromStream(std::istream &i)
 
LayoutVector_t ParseLayoutString(TString layerSpec)
 
static void WriteMatrixXML(void *parent, const char *name, const TMatrixT< Double_t > &X)
 
MethodDNN(DataSetInfo &theData, const TString &theWeightFile)
 
void MakeClassSpecific(std::ostream &, const TString &) const
 
MethodDNN(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption)
 
virtual Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
 
TString fWeightInitializationString
 
std::vector< std::pair< int, DNN::EActivationFunction > > LayoutVector_t
 
DNN::EInitialization fWeightInitialization
 
friend struct TestMethodDNNValidationSize
 
std::vector< TTrainingSettings > fTrainingSettings
 
TString fArchitectureString
 
const Ranking * CreateRanking()
 
KeyValueVector_t ParseKeyValueString(TString parseString, TString blockDelim, TString tokenDelim)
 
DNN::EOutputFunction fOutputFunction
 
void AddWeightsXMLTo(void *parent) const
 
void GetHelpMessage() const
 
static void ReadMatrixXML(void *xml, const char *name, TMatrixT< Double_t > &X)
 
virtual const std::vector< Float_t > & GetRegressionValues()
 
Ranking for variables in method (implementation)
 
Bool_t AddRawLine(XMLNodePointer_t parent, const char *line)
Add just line into xml file Line should has correct xml syntax that later it can be decoded by xml pa...
 
XMLNodePointer_t NewChild(XMLNodePointer_t parent, XMLNsPointer_t ns, const char *name, const char *content=nullptr)
create new child element for parent node
 
XMLAttrPointer_t NewAttr(XMLNodePointer_t xmlnode, XMLNsPointer_t, const char *name, const char *value)
creates new attribute for xmlnode, namespaces are not supported for attributes
 
const char * GetNodeContent(XMLNodePointer_t xmlnode)
get contents (if any) of xmlnode
 
EOutputFunction
Enum that represents output functions.
 
ERegularization
Enum representing the regularization type applied for a given layer.
 
create variable transformations
 
DNN::ERegularization regularization
 
std::vector< Double_t > dropoutProbabilities