Generic layer class.
This generic layer class represents a dense layer of a neural network with a given width n and activation function f. The activation function of each layer is given by \(\mathbf{u} = \mathbf{W}\mathbf{x} + \boldsymbol{\theta}\).
In addition to the weight and bias matrices, each layer allocates memory for its activations and the corresponding input tensor before evaluation of the activation function as well as the gradients of the weights and biases.
The layer provides member functions for the forward propagation of activations through the given layer.
Definition at line 59 of file DenseLayer.h.
Public Types | |
using | Matrix_t = typename Architecture_t::Matrix_t |
using | Scalar_t = typename Architecture_t::Scalar_t |
using | Tensor_t = typename Architecture_t::Tensor_t |
Public Member Functions | |
TDenseLayer (const TDenseLayer &) | |
Copy Constructor. | |
TDenseLayer (size_t BatchSize, size_t InputWidth, size_t Width, EInitialization init, Scalar_t DropoutProbability, EActivationFunction f, ERegularization reg, Scalar_t weightDecay) | |
Constructor. | |
TDenseLayer (TDenseLayer< Architecture_t > *layer) | |
Copy the dense layer provided as a pointer. | |
~TDenseLayer () | |
Destructor. | |
virtual void | AddWeightsXMLTo (void *parent) |
Writes the information and the weights about the layer in an XML node. | |
void | Backward (Tensor_t &gradients_backward, const Tensor_t &activations_backward) |
Compute weight, bias and activation gradients. | |
void | Forward (Tensor_t &input, bool applyDropout=false) |
Compute activation of the layer for the given input. | |
EActivationFunction | GetActivationFunction () const |
Scalar_t | GetDropoutProbability () const |
Getters. | |
Tensor_t & | GetInputActivation () |
const Tensor_t & | GetInputActivation () const |
ERegularization | GetRegularization () const |
Scalar_t | GetWeightDecay () const |
void | Print () const |
std::vector<Matrix_t> &inp1, std::vector<Matrix_t> &inp2); | |
virtual void | ReadWeightsFromXML (void *parent) |
Read the information and the weights about the layer from XML node. | |
virtual void | SetDropoutProbability (Scalar_t dropoutProbability) |
Set dropout probabilities. | |
Public Member Functions inherited from TMVA::DNN::VGeneralLayer< Architecture_t > | |
VGeneralLayer (const VGeneralLayer &) | |
Copy Constructor. | |
VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, size_t WeightsNRows, size_t WeightsNCols, size_t BiasesNSlices, size_t BiasesNRows, size_t BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | |
Constructor. | |
VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, std::vector< size_t > WeightsNRows, std::vector< size_t > WeightsNCols, size_t BiasesNSlices, std::vector< size_t > BiasesNRows, std::vector< size_t > BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | |
General Constructor with different weights dimension. | |
VGeneralLayer (VGeneralLayer< Architecture_t > *layer) | |
Copy the layer provided as a pointer. | |
virtual | ~VGeneralLayer () |
Virtual Destructor. | |
void | CopyBiases (const std::vector< Matrix_t > &otherBiases) |
Copies the biases provided as an input. | |
template<typename Arch > | |
void | CopyParameters (const VGeneralLayer< Arch > &layer) |
Copy all trainable weight and biases from another equivalent layer but with different architecture The function can copy also extra parameters in addition to weights and biases if they are return by the function GetExtraLayerParameters. | |
void | CopyWeights (const std::vector< Matrix_t > &otherWeights) |
Copies the weights provided as an input. | |
Tensor_t & | GetActivationGradients () |
const Tensor_t & | GetActivationGradients () const |
Matrix_t | GetActivationGradientsAt (size_t i) |
const Matrix_t & | GetActivationGradientsAt (size_t i) const |
size_t | GetBatchSize () const |
Getters. | |
std::vector< Matrix_t > & | GetBiases () |
const std::vector< Matrix_t > & | GetBiases () const |
Matrix_t & | GetBiasesAt (size_t i) |
const Matrix_t & | GetBiasesAt (size_t i) const |
std::vector< Matrix_t > & | GetBiasGradients () |
const std::vector< Matrix_t > & | GetBiasGradients () const |
Matrix_t & | GetBiasGradientsAt (size_t i) |
const Matrix_t & | GetBiasGradientsAt (size_t i) const |
size_t | GetDepth () const |
virtual std::vector< Matrix_t > | GetExtraLayerParameters () const |
size_t | GetHeight () const |
EInitialization | GetInitialization () const |
size_t | GetInputDepth () const |
size_t | GetInputHeight () const |
size_t | GetInputWidth () const |
Tensor_t & | GetOutput () |
const Tensor_t & | GetOutput () const |
Matrix_t | GetOutputAt (size_t i) |
const Matrix_t & | GetOutputAt (size_t i) const |
std::vector< Matrix_t > & | GetWeightGradients () |
const std::vector< Matrix_t > & | GetWeightGradients () const |
Matrix_t & | GetWeightGradientsAt (size_t i) |
const Matrix_t & | GetWeightGradientsAt (size_t i) const |
std::vector< Matrix_t > & | GetWeights () |
const std::vector< Matrix_t > & | GetWeights () const |
Matrix_t & | GetWeightsAt (size_t i) |
const Matrix_t & | GetWeightsAt (size_t i) const |
size_t | GetWidth () const |
virtual void | Initialize () |
Initialize the weights and biases according to the given initialization method. | |
bool | IsTraining () const |
void | ReadMatrixXML (void *node, const char *name, Matrix_t &matrix) |
virtual void | ResetTraining () |
Reset some training flags after a loop on all batches Some layer (e.g. | |
void | SetBatchSize (size_t batchSize) |
Setters. | |
void | SetDepth (size_t depth) |
virtual void | SetExtraLayerParameters (const std::vector< Matrix_t > &) |
void | SetHeight (size_t height) |
void | SetInputDepth (size_t inputDepth) |
void | SetInputHeight (size_t inputHeight) |
void | SetInputWidth (size_t inputWidth) |
void | SetIsTraining (bool isTraining) |
void | SetWidth (size_t width) |
void | Update (const Scalar_t learningRate) |
Updates the weights and biases, given the learning rate. | |
void | UpdateBiases (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
Updates the biases, given the gradients and the learning rate. | |
void | UpdateBiasGradients (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
Updates the bias gradients, given some other weight gradients and learning rate. | |
void | UpdateWeightGradients (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
Updates the weight gradients, given some other weight gradients and learning rate. | |
void | UpdateWeights (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
Updates the weights, given the gradients and the learning rate,. | |
void | WriteMatrixToXML (void *node, const char *name, const Matrix_t &matrix) |
void | WriteTensorToXML (void *node, const char *name, const std::vector< Matrix_t > &tensor) |
helper functions for XML | |
Private Attributes | |
Architecture_t::ActivationDescriptor_t | fActivationDesc |
Tensor_t | fDerivatives |
output of GEMM and input to activation function | |
Scalar_t | fDropoutProbability |
activation functgion gradient | |
EActivationFunction | fF |
Activation function of the layer. | |
Tensor_t | fInputActivation |
ERegularization | fReg |
The regularization method. | |
Scalar_t | fWeightDecay |
The weight decay. | |
Additional Inherited Members | |
Protected Attributes inherited from TMVA::DNN::VGeneralLayer< Architecture_t > | |
Tensor_t | fActivationGradients |
Gradients w.r.t. the activations of this layer. | |
size_t | fBatchSize |
Batch size used for training and evaluation. | |
std::vector< Matrix_t > | fBiases |
The biases associated to the layer. | |
std::vector< Matrix_t > | fBiasGradients |
Gradients w.r.t. the bias values of the layer. | |
size_t | fDepth |
The depth of the layer. | |
size_t | fHeight |
The height of the layer. | |
EInitialization | fInit |
The initialization method. | |
size_t | fInputDepth |
The depth of the previous layer or input. | |
size_t | fInputHeight |
The height of the previous layer or input. | |
size_t | fInputWidth |
The width of the previous layer or input. | |
bool | fIsTraining |
Flag indicating the mode. | |
Tensor_t | fOutput |
Activations of this layer. | |
std::vector< Matrix_t > | fWeightGradients |
Gradients w.r.t. the weights of the layer. | |
std::vector< Matrix_t > | fWeights |
The weights associated to the layer. | |
size_t | fWidth |
The width of this layer. | |
#include <TMVA/DNN/DenseLayer.h>
using TMVA::DNN::TDenseLayer< Architecture_t >::Matrix_t = typename Architecture_t::Matrix_t |
Definition at line 63 of file DenseLayer.h.
using TMVA::DNN::TDenseLayer< Architecture_t >::Scalar_t = typename Architecture_t::Scalar_t |
Definition at line 62 of file DenseLayer.h.
using TMVA::DNN::TDenseLayer< Architecture_t >::Tensor_t = typename Architecture_t::Tensor_t |
Definition at line 64 of file DenseLayer.h.
TMVA::DNN::TDenseLayer< Architecture_t >::TDenseLayer | ( | size_t | BatchSize, |
size_t | InputWidth, | ||
size_t | Width, | ||
EInitialization | init, | ||
Scalar_t | DropoutProbability, | ||
EActivationFunction | f, | ||
ERegularization | reg, | ||
Scalar_t | weightDecay | ||
) |
Constructor.
Definition at line 136 of file DenseLayer.h.
TMVA::DNN::TDenseLayer< Architecture_t >::TDenseLayer | ( | TDenseLayer< Architecture_t > * | layer | ) |
Copy the dense layer provided as a pointer.
Definition at line 152 of file DenseLayer.h.
TMVA::DNN::TDenseLayer< Architecture_t >::TDenseLayer | ( | const TDenseLayer< Architecture_t > & | layer | ) |
Copy Constructor.
Definition at line 164 of file DenseLayer.h.
TMVA::DNN::TDenseLayer< Architecture_t >::~TDenseLayer |
Destructor.
Definition at line 176 of file DenseLayer.h.
|
virtual |
Writes the information and the weights about the layer in an XML node.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 249 of file DenseLayer.h.
|
virtual |
Compute weight, bias and activation gradients.
Uses the precomputed first partial derviatives of the activation function computed during forward propagation and modifies them. Must only be called directly a the corresponding call to Forward(...).
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 206 of file DenseLayer.h.
|
virtual |
Compute activation of the layer for the given input.
The input must be in 3D tensor form with the different matrices corresponding to different events in the batch. Computes activations as well as the first partial derivative of the activation function at those activations.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 187 of file DenseLayer.h.
|
inline |
Definition at line 126 of file DenseLayer.h.
|
inline |
Getters.
Definition at line 120 of file DenseLayer.h.
|
inline |
Definition at line 124 of file DenseLayer.h.
|
inline |
Definition at line 123 of file DenseLayer.h.
|
inline |
Definition at line 127 of file DenseLayer.h.
|
inline |
Definition at line 128 of file DenseLayer.h.
|
virtual |
std::vector<Matrix_t> &inp1, std::vector<Matrix_t> &inp2);
Printing the layer info.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 231 of file DenseLayer.h.
|
virtual |
Read the information and the weights about the layer from XML node.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 267 of file DenseLayer.h.
|
inlinevirtual |
Set dropout probabilities.
Reimplemented from TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 117 of file DenseLayer.h.
|
private |
Definition at line 77 of file DenseLayer.h.
|
private |
output of GEMM and input to activation function
Definition at line 69 of file DenseLayer.h.
|
private |
activation functgion gradient
Probability that an input is active.
Definition at line 71 of file DenseLayer.h.
|
private |
Activation function of the layer.
Definition at line 73 of file DenseLayer.h.
|
private |
Definition at line 68 of file DenseLayer.h.
|
private |
The regularization method.
Definition at line 74 of file DenseLayer.h.
|
private |
The weight decay.
Definition at line 75 of file DenseLayer.h.