RooAbsPdf is the abstract interface for all probability density functions. The class provides hybrid analytical/numerical normalization for its implementations, error tracing and a MC generator interface.
A minimal implementation of a PDF class derived from RooAbsPdf should override the evaluate()
function. This function should return the PDF's value (which does not need to be normalised).
Although the normalization of a PDF is an integral part of a probability density function, normalization is treated separately in RooAbsPdf. The reason is that a RooAbsPdf object is more than a PDF: it can be a building block for a more complex, composite PDF if any of its variables are functions instead of variables. In such cases the normalization of the composite may not be simply the integral over the dependents of the top level PDF as these are functions with potentially non-trivial Jacobian terms themselves.
evaluate()
function.In addition, RooAbsPdf objects do not have a static concept of what variables are parameters and what variables are dependents (which need to be integrated over for a correct PDF normalization). Instead, the choice of normalization is always specified each time a normalized value is requested from the PDF via the getVal() method.
RooAbsPdf manages the entire normalization logic of each PDF with help of a RooRealIntegral object, which coordinates the integration of a given choice of normalization. By default, RooRealIntegral will perform a fully numeric integration of all dependents. However, PDFs can advertise one or more (partial) analytical integrals of their function, and these will be used by RooRealIntegral, if it determines that this is safe (i.e. no hidden Jacobian terms, multiplication with other PDFs that have one or more dependents in commen etc).
To implement analytical integrals, two functions must be implemented. First,
should return the analytical integrals that are supported. integSet
is the set of dependents for which integration is requested. The function should copy the subset of dependents it can analytically integrate to anaIntSet
, and return a unique identification code for this integration configuration. If no integration can be performed, zero should be returned. Second,
implements the actual analytical integral(s) advertised by getAnalyticalIntegral()
. This function will only be called with codes returned by getAnalyticalIntegral()
, except code zero.
The integration range for each dependent to be integrated can be obtained from the dependent's proxy functions min()
and max()
. Never call these proxy functions for any proxy not known to be a dependent via the integration code. Doing so may be ill-defined, e.g. in case the proxy holds a function, and will trigger an assert. Integrated category dependents should always be summed over all of their states.
Distributions for any PDF can be generated with the accept/reject method, but for certain PDFs, more efficient methods may be implemented. To implement direct generation of one or more observables, two functions need to be implemented, similar to those for analytical integrals:
and
The first function advertises observables, for which distributions can be generated, similar to the way analytical integrals are advertised. The second function implements the actual generator for the advertised observables.
The generated dependent values should be stored in the proxy objects. For this, the assignment operator can be used (i.e. xProxy = 3.0
). Never call assign to any proxy not known to be a dependent via the generation code. Doing so may be ill-defined, e.g. in case the proxy holds a function, and will trigger an assert.
To speed up computations with large numbers of data events in unbinned fits, it is beneficial to override evaluateSpan()
. Like this, large spans of computations can be done, without having to call evaluate()
for each single data event. evaluateSpan()
should execute the same computation as evaluate()
, but it may choose an implementation that is capable of SIMD computations. If evaluateSpan is not implemented, the classic and slower evaluate()
will be called for each data event.
Some member functions of RooAbsPdf that take a RooCmdArg as argument also support keyword arguments. So far, this applies to RooAbsPdf::fitTo, RooAbsPdf::plotOn, RooAbsPdf::generate, RooAbsPdf::paramOn, RooAbsPdf::createCdf, RooAbsPdf::generateBinned, RooAbsPdf::createChi2, RooAbsPdf::prepareMultiGen and RooAbsPdf::createNLL. For example, the following code is equivalent in PyROOT:
Definition at line 43 of file RooAbsPdf.h.
Classes | |
class | CacheElem |
Normalization set with for above integral. More... | |
class | GenSpec |
struct | MinimizerConfig |
Configuration struct for RooAbsPdf::minimizeNLL with all the default. More... | |
Public Member Functions | |
RooAbsPdf () | |
Default constructor. | |
RooAbsPdf (const char *name, const char *title, Double_t minVal, Double_t maxVal) | |
Constructor with name, title, and plot range. | |
RooAbsPdf (const char *name, const char *title=0) | |
Constructor with name and title only. | |
virtual | ~RooAbsPdf () |
Destructor. | |
Double_t | analyticalIntegralWN (Int_t code, const RooArgSet *normSet, const char *rangeName=0) const |
Analytical integral with normalization (see RooAbsReal::analyticalIntegralWN() for further information) | |
virtual RooAbsGenContext * | autoGenContext (const RooArgSet &vars, const RooDataSet *prototype=0, const RooArgSet *auxProto=0, Bool_t verbose=kFALSE, Bool_t autoBinned=kTRUE, const char *binnedTag="") const |
virtual RooAbsGenContext * | binnedGenContext (const RooArgSet &vars, Bool_t verbose=kFALSE) const |
Return a binned generator context. | |
Bool_t | canBeExtended () const |
If true, PDF can provide extended likelihood term. | |
virtual RooFitResult * | chi2FitTo (RooDataHist &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) |
Perform a \( \chi^2 \) fit to given histogram. | |
virtual RooFitResult * | chi2FitTo (RooDataHist &data, const RooLinkedList &cmdList) |
Perform a \( \chi^2 \) fit to given histogram. | |
virtual RooFitResult * | chi2FitTo (RooDataHist &data, const RooLinkedList &cmdList) |
Calls RooAbsPdf::createChi2(RooDataSet& data, const RooLinkedList& cmdList) and returns fit result. | |
virtual RooFitResult * | chi2FitTo (RooDataSet &xydata, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) |
Perform a 2-D \( \chi^2 \) fit using a series of x and y values stored in the dataset xydata . | |
virtual RooFitResult * | chi2FitTo (RooDataSet &xydata, const RooLinkedList &cmdList) |
Perform a 2-D \( \chi^2 \) fit using a series of x and y values stored in the dataset xydata . | |
RooAbsReal * | createCdf (const RooArgSet &iset, const RooArgSet &nset=RooArgSet()) |
Create a cumulative distribution function of this p.d.f in terms of the observables listed in iset. | |
RooAbsReal * | createCdf (const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) |
Create an object that represents the integral of the function over one or more observables listed in iset . | |
virtual RooAbsReal * | createChi2 (RooDataHist &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) |
Create a \( \chi^2 \) variable from a histogram and this function. | |
virtual RooAbsReal * | createChi2 (RooDataHist &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) |
Create a \( \chi^2 \) from a histogram and this function. | |
virtual RooAbsReal * | createChi2 (RooDataHist &data, const RooLinkedList &cmdList) |
Create a \( \chi^2 \) variable from a histogram and this function. | |
virtual RooAbsReal * | createChi2 (RooDataSet &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) |
Create a \( \chi^2 \) from a series of x and y values stored in a dataset. | |
virtual RooAbsReal * | createChi2 (RooDataSet &data, const RooLinkedList &cmdList) |
See RooAbsReal::createChi2(RooDataSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&) | |
virtual RooAbsReal * | createChi2 (RooDataSet &data, const RooLinkedList &cmdList) |
Argument-list version of RooAbsPdf::createChi2() | |
virtual RooAbsReal * | createNLL (RooAbsData &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) |
Construct representation of -log(L) of PDF with given dataset. | |
virtual RooAbsReal * | createNLL (RooAbsData &data, const RooLinkedList &cmdList) |
Construct representation of -log(L) of PDFwith given dataset. | |
virtual RooAbsPdf * | createProjection (const RooArgSet &iset) |
Return a p.d.f that represent a projection of this p.d.f integrated over given observables. | |
RooAbsReal * | createScanCdf (const RooArgSet &iset, const RooArgSet &nset, Int_t numScanBins, Int_t intOrder) |
double | expectedEvents (const RooArgSet &nset) const |
Return expected number of events to be used in calculation of extended likelihood. | |
virtual Double_t | expectedEvents (const RooArgSet *nset) const |
Return expected number of events to be used in calculation of extended likelihood. | |
double | extendedTerm (double sumEntries, double expected, double sumEntriesW2=0.0) const |
double | extendedTerm (double sumEntries, RooArgSet const *nset, double sumEntriesW2=0.0) const |
Return the extended likelihood term ( \( N_\mathrm{expect} - N_\mathrm{observed} \cdot \log(N_\mathrm{expect} \)) of this PDF for the given number of observed events. | |
double | extendedTerm (RooAbsData const &data, bool weightSquared) const |
Return the extended likelihood term ( \( N_\mathrm{expect} - N_\mathrm{observed} \cdot \log(N_\mathrm{expect} \)) of this PDF for the given number of observed events. | |
virtual ExtendMode | extendMode () const |
Returns ability of PDF to provide extended likelihood terms. | |
virtual RooFitResult * | fitTo (RooAbsData &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) |
Fit PDF to given dataset. | |
virtual RooFitResult * | fitTo (RooAbsData &data, const RooLinkedList &cmdList) |
Fit PDF to given dataset. | |
virtual RooAbsGenContext * | genContext (const RooArgSet &vars, const RooDataSet *prototype=0, const RooArgSet *auxProto=0, Bool_t verbose=kFALSE) const |
Interface function to create a generator context from a p.d.f. | |
RooDataSet * | generate (const RooArgSet &whatVars, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none()) |
Generate a new dataset containing the specified variables with events sampled from our distribution. | |
RooDataSet * | generate (const RooArgSet &whatVars, const RooDataSet &prototype, Int_t nEvents=0, Bool_t verbose=kFALSE, Bool_t randProtoOrder=kFALSE, Bool_t resampleProto=kFALSE) const |
Generate a new dataset using a prototype dataset as a model, with values of the variables in whatVars sampled from our distribution. | |
RooDataSet * | generate (const RooArgSet &whatVars, Double_t nEvents=0, Bool_t verbose=kFALSE, Bool_t autoBinned=kTRUE, const char *binnedTag="", Bool_t expectedData=kFALSE, Bool_t extended=kFALSE) const |
Generate a new dataset containing the specified variables with events sampled from our distribution. | |
RooDataSet * | generate (const RooArgSet &whatVars, Int_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none()) |
See RooAbsPdf::generate(const RooArgSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&) | |
RooDataSet * | generate (GenSpec &) const |
Generate according to GenSpec obtained from prepareMultiGen(). | |
virtual RooDataHist * | generateBinned (const RooArgSet &whatVars, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none()) const |
Generate a new dataset containing the specified variables with events sampled from our distribution. | |
virtual RooDataHist * | generateBinned (const RooArgSet &whatVars, Double_t nEvents, Bool_t expectedData=kFALSE, Bool_t extended=kFALSE) const |
Generate a new dataset containing the specified variables with events sampled from our distribution. | |
virtual RooDataHist * | generateBinned (const RooArgSet &whatVars, Double_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none()) const |
As RooAbsPdf::generateBinned(const RooArgSet&, const RooCmdArg&,const RooCmdArg&, const RooCmdArg&,const RooCmdArg&, const RooCmdArg&,const RooCmdArg&) | |
virtual void | generateEvent (Int_t code) |
Interface for generation of an event using the algorithm corresponding to the specified code. | |
virtual RooDataSet * | generateSimGlobal (const RooArgSet &whatVars, Int_t nEvents) |
Special generator interface for generation of 'global observables' – for RooStats tools. | |
virtual RooArgSet * | getAllConstraints (const RooArgSet &observables, RooArgSet &constrainedParams, Bool_t stripDisconnected=kTRUE) const |
This helper function finds and collects all constraints terms of all component p.d.f.s and returns a RooArgSet with all those terms. | |
virtual RooArgSet * | getConstraints (const RooArgSet &, RooArgSet &, Bool_t) const |
virtual Int_t | getGenerator (const RooArgSet &directVars, RooArgSet &generateVars, Bool_t staticInitOK=kTRUE) const |
Load generatedVars with the subset of directVars that we can generate events for, and return a code that specifies the generator algorithm we will use. | |
const RooNumGenConfig * | getGeneratorConfig () const |
Return the numeric MC generator configuration used for this object. | |
RooSpan< const double > | getLogProbabilities (RooBatchCompute::RunContext &evalData, const RooArgSet *normSet=nullptr) const |
Compute the log-likelihoods for all events in the requested batch. | |
void | getLogProbabilities (RooSpan< const double > pdfValues, double *output) const |
virtual Double_t | getLogVal (const RooArgSet *set=0) const |
Return the log of the current value with given normalization An error message is printed if the argument of the log is negative. | |
RooSpan< const double > | getLogValBatch (std::size_t begin, std::size_t batchSize, const RooArgSet *normSet=nullptr) const |
Double_t | getNorm (const RooArgSet &nset) const |
Get normalisation term needed to normalise the raw values returned by getVal(). | |
virtual Double_t | getNorm (const RooArgSet *set=0) const |
Get normalisation term needed to normalise the raw values returned by getVal(). | |
const RooAbsReal * | getNormIntegral (const RooArgSet &nset) const |
virtual const RooAbsReal * | getNormObj (const RooArgSet *set, const RooArgSet *iset, const TNamed *rangeName=0) const |
Return pointer to RooAbsReal object that implements calculation of integral over observables iset in range rangeName, optionally taking the integrand normalized over observables nset. | |
std::vector< double > | getValues (RooAbsData const &data, RooFit::BatchModeOption batchMode=RooFit::BatchModeOption::Cpu) const |
RooSpan< const double > | getValues (RooBatchCompute::RunContext &evalData, const RooArgSet *normSet) const |
Compute batch of values for given input data, and normalise by integrating over the observables in normSet . | |
virtual RooSpan< const double > | getValues (RooBatchCompute::RunContext &evalData, const RooArgSet *normSet=nullptr) const |
virtual Double_t | getValV (const RooArgSet *set=0) const |
Return current value, normalized by integrating over the observables in nset . | |
virtual void | initGenerator (Int_t code) |
Interface for one-time initialization to setup the generator for the specified code. | |
virtual Bool_t | isDirectGenSafe (const RooAbsArg &arg) const |
Check if given observable can be safely generated using the pdfs internal generator mechanism (if that existsP). | |
std::unique_ptr< RooFitResult > | minimizeNLL (RooAbsReal &nll, RooAbsData const &data, MinimizerConfig const &cfg) |
Minimizes a given NLL variable by finding the optimal parameters with the RooMinimzer. | |
Bool_t | mustBeExtended () const |
If true PDF must provide extended likelihood term. | |
const char * | normRange () const |
virtual RooPlot * | paramOn (RooPlot *frame, const RooAbsData *data, const char *label="", Int_t sigDigits=2, Option_t *options="NELU", Double_t xmin=0.65, Double_t xmax=0.9, Double_t ymax=0.9) |
virtual RooPlot * | paramOn (RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) |
Add a box with parameter values (and errors) to the specified frame. | |
virtual RooPlot * | plotOn (RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none(), const RooCmdArg &arg9=RooCmdArg::none(), const RooCmdArg &arg10=RooCmdArg::none()) const |
Helper calling plotOn(RooPlot*, RooLinkedList&) const. | |
virtual RooPlot * | plotOn (RooPlot *frame, RooLinkedList &cmdList) const |
Plot (project) PDF on specified frame. | |
GenSpec * | prepareMultiGen (const RooArgSet &whatVars, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none()) |
Prepare GenSpec configuration object for efficient generation of multiple datasets from identical specification. | |
virtual void | printMultiline (std::ostream &os, Int_t contents, Bool_t verbose=kFALSE, TString indent="") const |
Print multi line detailed information of this RooAbsPdf. | |
virtual void | printValue (std::ostream &os) const |
Print value of p.d.f, also print normalization integral that was last used, if any. | |
virtual void | resetErrorCounters (Int_t resetValue=10) |
Reset error counter to given value, limiting the number of future error messages for this pdf to 'resetValue'. | |
virtual Bool_t | selfNormalized () const |
Shows if a PDF is self-normalized, which means that no attempt is made to add a normalization term. | |
void | setGeneratorConfig () |
Remove the specialized numeric MC generator configuration associated with this object. | |
void | setGeneratorConfig (const RooNumGenConfig &config) |
Set the given configuration as default numeric MC generator configuration for this object. | |
void | setNormRange (const char *rangeName) |
void | setNormRangeOverride (const char *rangeName) |
void | setTraceCounter (Int_t value, Bool_t allNodes=kFALSE) |
Reset trace counter to given value, limiting the number of future trace messages for this pdf to 'value'. | |
RooNumGenConfig * | specialGeneratorConfig () const |
Returns the specialized integrator configuration for this RooAbsReal. | |
RooNumGenConfig * | specialGeneratorConfig (Bool_t createOnTheFly) |
Returns the specialized integrator configuration for this RooAbsReal. | |
Public Member Functions inherited from RooAbsReal | |
RooAbsReal () | |
coverity[UNINIT_CTOR] Default constructor | |
RooAbsReal (const char *name, const char *title, const char *unit="") | |
Constructor with unit label. | |
RooAbsReal (const char *name, const char *title, Double_t minVal, Double_t maxVal, const char *unit="") | |
Constructor with plot range and unit label. | |
RooAbsReal (const RooAbsReal &other, const char *name=0) | |
Copy constructor. | |
virtual | ~RooAbsReal () |
Destructor. | |
virtual Double_t | analyticalIntegral (Int_t code, const char *rangeName=0) const |
Implements the actual analytical integral(s) advertised by getAnalyticalIntegral. | |
TF1 * | asTF (const RooArgList &obs, const RooArgList &pars=RooArgList(), const RooArgSet &nset=RooArgSet()) const |
Return a ROOT TF1,2,3 object bound to this RooAbsReal with given definition of observables and parameters. | |
virtual std::list< Double_t > * | binBoundaries (RooAbsRealLValue &obs, Double_t xlo, Double_t xhi) const |
Retrieve bin boundaries if this distribution is binned in obs . | |
RooAbsFunc * | bindVars (const RooArgSet &vars, const RooArgSet *nset=0, Bool_t clipInvalid=kFALSE) const |
Create an interface adaptor f(vars) that binds us to the specified variables (in arbitrary order). | |
virtual void | computeBatch (cudaStream_t *, double *output, size_t size, RooFit::Detail::DataMap const &) const |
Base function for computing multiple values of a RooAbsReal. | |
RooAbsArg * | createFundamental (const char *newname=0) const |
Create a RooRealVar fundamental object with our properties. | |
TH1 * | createHistogram (const char *name, const RooAbsRealLValue &xvar, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const |
Create and fill a ROOT histogram TH1, TH2 or TH3 with the values of this function. | |
TH1 * | createHistogram (const char *name, const RooAbsRealLValue &xvar, RooLinkedList &argList) const |
Internal method implementing createHistogram. | |
TH1 * | createHistogram (const char *varNameList, Int_t xbins=0, Int_t ybins=0, Int_t zbins=0) const |
Create and fill a ROOT histogram TH1, TH2 or TH3 with the values of this function for the variables with given names. | |
RooAbsReal * | createIntegral (const RooArgSet &iset, const char *rangeName) const |
Create integral over observables in iset in range named rangeName. | |
RooAbsReal * | createIntegral (const RooArgSet &iset, const RooArgSet &nset, const char *rangeName=0) const |
Create integral over observables in iset in range named rangeName with integrand normalized over observables in nset. | |
RooAbsReal * | createIntegral (const RooArgSet &iset, const RooArgSet &nset, const RooNumIntConfig &cfg, const char *rangeName=0) const |
Create integral over observables in iset in range named rangeName with integrand normalized over observables in nset while using specified configuration for any numeric integration. | |
virtual RooAbsReal * | createIntegral (const RooArgSet &iset, const RooArgSet *nset=0, const RooNumIntConfig *cfg=0, const char *rangeName=0) const |
Create an object that represents the integral of the function over one or more observables listed in iset. | |
RooAbsReal * | createIntegral (const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const |
Create an object that represents the integral of the function over one or more observables listed in iset . | |
RooAbsReal * | createIntegral (const RooArgSet &iset, const RooNumIntConfig &cfg, const char *rangeName=0) const |
Create integral over observables in iset in range named rangeName using specified configuration for any numeric integration. | |
RooAbsReal * | createIntRI (const RooArgSet &iset, const RooArgSet &nset=RooArgSet()) |
Utility function for createRunningIntegral. | |
const RooAbsReal * | createPlotProjection (const RooArgSet &dependentVars, const RooArgSet *projectedVars, RooArgSet *&cloneSet, const char *rangeName=0, const RooArgSet *condObs=0) const |
Utility function for plotOn() that creates a projection of a function or p.d.f to be plotted on a RooPlot. | |
const RooAbsReal * | createPlotProjection (const RooArgSet &depVars, const RooArgSet &projVars, RooArgSet *&cloneSet) const |
Utility function for plotOn() that creates a projection of a function or p.d.f to be plotted on a RooPlot. | |
virtual RooAbsReal * | createProfile (const RooArgSet ¶msOfInterest) |
Create a RooProfileLL object that eliminates all nuisance parameters in the present function. | |
RooAbsReal * | createRunningIntegral (const RooArgSet &iset, const RooArgSet &nset=RooArgSet()) |
Calls createRunningIntegral(const RooArgSet&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&) | |
RooAbsReal * | createRunningIntegral (const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) |
Create an object that represents the running integral of the function over one or more observables listed in iset, i.e. | |
RooAbsReal * | createScanRI (const RooArgSet &iset, const RooArgSet &nset, Int_t numScanBins, Int_t intOrder) |
Utility function for createRunningIntegral that construct an object implementing the numeric scanning technique for calculating the running integral. | |
virtual Double_t | defaultErrorLevel () const |
RooDerivative * | derivative (RooRealVar &obs, const RooArgSet &normSet, Int_t order, Double_t eps=0.001) |
Return function representing first, second or third order derivative of this function. | |
RooDerivative * | derivative (RooRealVar &obs, Int_t order=1, Double_t eps=0.001) |
Return function representing first, second or third order derivative of this function. | |
virtual void | enableOffsetting (Bool_t) |
RooDataHist * | fillDataHist (RooDataHist *hist, const RooArgSet *nset, Double_t scaleFactor, Bool_t correctForBinVolume=kFALSE, Bool_t showProgress=kFALSE) const |
Fill a RooDataHist with values sampled from this function at the bin centers. | |
TH1 * | fillHistogram (TH1 *hist, const RooArgList &plotVars, Double_t scaleFactor=1, const RooArgSet *projectedVars=0, Bool_t scaling=kTRUE, const RooArgSet *condObs=0, Bool_t setError=kTRUE) const |
Fill the ROOT histogram 'hist' with values sampled from this function at the bin centers. | |
Double_t | findRoot (RooRealVar &x, Double_t xmin, Double_t xmax, Double_t yval) |
Return value of x (in range xmin,xmax) at which function equals yval. | |
virtual void | fixAddCoefNormalization (const RooArgSet &addNormSet=RooArgSet(), Bool_t force=kTRUE) |
Fix the interpretation of the coefficient of any RooAddPdf component in the expression tree headed by this object to the given set of observables. | |
virtual void | fixAddCoefRange (const char *rangeName=0, Bool_t force=kTRUE) |
Fix the interpretation of the coefficient of any RooAddPdf component in the expression tree headed by this object to the given set of observables. | |
virtual Bool_t | forceAnalyticalInt (const RooAbsArg &) const |
virtual void | forceNumInt (Bool_t flag=kTRUE) |
RooFunctor * | functor (const RooArgList &obs, const RooArgList &pars=RooArgList(), const RooArgSet &nset=RooArgSet()) const |
Return a RooFunctor object bound to this RooAbsReal with given definition of observables and parameters. | |
virtual Int_t | getAnalyticalIntegral (RooArgSet &allVars, RooArgSet &analVars, const char *rangeName=0) const |
Interface function getAnalyticalIntergral advertises the analytical integrals that are supported. | |
virtual Int_t | getAnalyticalIntegralWN (RooArgSet &allVars, RooArgSet &analVars, const RooArgSet *normSet, const char *rangeName=0) const |
Variant of getAnalyticalIntegral that is also passed the normalization set that should be applied to the integrand of which the integral is requested. | |
Bool_t | getForceNumInt () const |
RooNumIntConfig * | getIntegratorConfig () |
Return the numeric integration configuration used for this object. | |
const RooNumIntConfig * | getIntegratorConfig () const |
Return the numeric integration configuration used for this object. | |
virtual Int_t | getMaxVal (const RooArgSet &vars) const |
Advertise capability to determine maximum value of function for given set of observables. | |
const char * | getPlotLabel () const |
Get the label associated with the variable. | |
Double_t | getPropagatedError (const RooFitResult &fr, const RooArgSet &nset=RooArgSet()) const |
Calculate error on self by linearly propagating errors on parameters using the covariance matrix from a fit result. | |
TString | getTitle (Bool_t appendUnit=kFALSE) const |
Return this variable's title string. | |
const Text_t * | getUnit () const |
Double_t | getVal (const RooArgSet &normalisationSet) const |
Like getVal(const RooArgSet*), but always requires an argument for normalisation. | |
Double_t | getVal (const RooArgSet *normalisationSet=nullptr) const |
Evaluate object. | |
virtual RooSpan< const double > | getValBatch (std::size_t, std::size_t, const RooArgSet *=nullptr)=delete |
std::vector< double > | getValues (RooAbsData const &data, RooFit::BatchModeOption batchMode=RooFit::BatchModeOption::Cpu) const |
RooMultiGenFunction * | iGenFunction (const RooArgSet &observables, const RooArgSet &nset=RooArgSet()) |
RooGenFunction * | iGenFunction (RooRealVar &x, const RooArgSet &nset=RooArgSet()) |
virtual Bool_t | isBinnedDistribution (const RooArgSet &) const |
Tests if the distribution is binned. Unless overridden by derived classes, this always returns false. | |
virtual Bool_t | isIdentical (const RooAbsArg &other, Bool_t assumeSameType=kFALSE) const |
virtual Bool_t | isOffsetting () const |
void | logEvalError (const char *message, const char *serverValueString=0) const |
Log evaluation error message. | |
virtual Double_t | maxVal (Int_t code) const |
Return maximum value for set of observables identified by code assigned in getMaxVal. | |
RooAbsMoment * | mean (RooRealVar &obs) |
RooAbsMoment * | mean (RooRealVar &obs, const RooArgSet &nset) |
virtual Int_t | minTrialSamples (const RooArgSet &) const |
RooAbsMoment * | moment (RooRealVar &obs, const RooArgSet &normObs, Int_t order, Bool_t central, Bool_t takeRoot, Bool_t intNormObs) |
Return function representing moment of p.d.f (normalized w.r.t given observables) of given order. | |
RooAbsMoment * | moment (RooRealVar &obs, Int_t order, Bool_t central, Bool_t takeRoot) |
Return function representing moment of function of given order. | |
virtual Double_t | offset () const |
RooAbsReal & | operator= (const RooAbsReal &other) |
Assign values, name and configs from another RooAbsReal. | |
virtual Bool_t | operator== (const RooAbsArg &other) const |
Equality operator when comparing to another RooAbsArg. | |
Bool_t | operator== (Double_t value) const |
Equality operator comparing to a Double_t. | |
virtual std::list< Double_t > * | plotSamplingHint (RooAbsRealLValue &obs, Double_t xlo, Double_t xhi) const |
Interface for returning an optional hint for initial sampling points when constructing a curve projected on observable obs . | |
virtual RooPlot * | plotSliceOn (RooPlot *frame, const RooArgSet &sliceSet, Option_t *drawOptions="L", Double_t scaleFactor=1.0, ScaleType stype=Relative, const RooAbsData *projData=0) const |
virtual void | preferredObservableScanOrder (const RooArgSet &obs, RooArgSet &orderedObs) const |
Interface method for function objects to indicate their preferred order of observables for scanning their values into a (multi-dimensional) histogram or RooDataSet. | |
virtual Bool_t | readFromStream (std::istream &is, Bool_t compact, Bool_t verbose=kFALSE) |
Read object contents from stream (dummy for now) | |
void | setCachedValue (double value, bool notifyClients=true) final |
Overwrite the value stored in this object's cache. | |
virtual Bool_t | setData (RooAbsData &, Bool_t=kTRUE) |
void | setIntegratorConfig () |
Remove the specialized numeric integration configuration associated with this object. | |
void | setIntegratorConfig (const RooNumIntConfig &config) |
Set the given integrator configuration as default numeric integration configuration for this object. | |
void | setParameterizeIntegral (const RooArgSet ¶mVars) |
void | setPlotLabel (const char *label) |
Set the label associated with this variable. | |
void | setUnit (const char *unit) |
RooAbsMoment * | sigma (RooRealVar &obs) |
RooAbsMoment * | sigma (RooRealVar &obs, const RooArgSet &nset) |
RooNumIntConfig * | specialIntegratorConfig () const |
Returns the specialized integrator configuration for this RooAbsReal. | |
RooNumIntConfig * | specialIntegratorConfig (Bool_t createOnTheFly) |
Returns the specialized integrator configuration for this RooAbsReal. | |
virtual void | writeToStream (std::ostream &os, Bool_t compact) const |
Write object contents to stream (dummy for now) | |
Public Member Functions inherited from RooAbsArg | |
RooAbsArg () | |
Default constructor. | |
RooAbsArg (const char *name, const char *title) | |
Create an object with the specified name and descriptive title. | |
RooAbsArg (const RooAbsArg &other, const char *name=0) | |
Copy constructor transfers all boolean and string properties of the original object. | |
virtual | ~RooAbsArg () |
Destructor. | |
bool | addOwnedComponents (const RooAbsCollection &comps) |
Take ownership of the contents of 'comps'. | |
bool | addOwnedComponents (RooAbsCollection &&comps) |
Take ownership of the contents of 'comps'. | |
bool | addOwnedComponents (RooArgList &&comps) |
Take ownership of the contents of 'comps'. | |
template<typename... Args_t> | |
bool | addOwnedComponents (std::unique_ptr< Args_t >... comps) |
virtual void | applyWeightSquared (bool flag) |
Disables or enables the usage of squared weights. | |
void | attachArgs (const RooAbsCollection &set) |
Bind this node to objects in set . | |
void | attachDataSet (const RooAbsData &set) |
Replace server nodes with names matching the dataset variable names with those data set variables, making this PDF directly dependent on the dataset. | |
void | attachDataStore (const RooAbsDataStore &set) |
Replace server nodes with names matching the dataset variable names with those data set variables, making this PDF directly dependent on the dataset. | |
const std::set< std::string > & | attributes () const |
virtual bool | canComputeBatchWithCuda () const |
virtual Bool_t | checkObservables (const RooArgSet *nset) const |
Overloadable function in which derived classes can implement consistency checks of the variables. | |
virtual TObject * | Clone (const char *newname=0) const |
Make a clone of an object using the Streamer facility. | |
virtual TObject * | clone (const char *newname=0) const =0 |
virtual RooAbsArg * | cloneTree (const char *newname=0) const |
Clone tree expression of objects. | |
Int_t | Compare (const TObject *other) const |
Utility function used by TCollection::Sort to compare contained TObjects We implement comparison by name, resulting in alphabetical sorting by object name. | |
std::size_t | dataToken () const |
Returns the token for retrieving results in the BatchMode. For internal use only. | |
virtual Int_t | defaultPrintContents (Option_t *opt) const |
Define default contents to print. | |
Bool_t | dependsOn (const RooAbsArg &server, const RooAbsArg *ignoreArg=0, Bool_t valueOnly=kFALSE) const |
Test whether we depend on (ie, are served by) the specified object. | |
Bool_t | dependsOn (const RooAbsCollection &serverList, const RooAbsArg *ignoreArg=0, Bool_t valueOnly=kFALSE) const |
Test whether we depend on (ie, are served by) any object in the specified collection. | |
Bool_t | dependsOnValue (const RooAbsArg &server, const RooAbsArg *ignoreArg=0) const |
Check whether this object depends on values served from the object passed as server . | |
Bool_t | dependsOnValue (const RooAbsCollection &serverList, const RooAbsArg *ignoreArg=0) const |
Check whether this object depends on values from an element in the serverList . | |
virtual std::unique_ptr< RooArgSet > | fillNormSetForServer (RooArgSet const &normSet, RooAbsArg const &server) const |
Fills a RooArgSet to be used as the normalization set for a server, given a normalization set for this RooAbsArg. | |
Bool_t | getAttribute (const Text_t *name) const |
Check if a named attribute is set. By default, all attributes are unset. | |
RooLinkedList | getCloningAncestors () const |
Return ancestors in cloning chain of this RooAbsArg. | |
RooArgSet * | getComponents () const |
Create a RooArgSet with all components (branch nodes) of the expression tree headed by this object. | |
bool | getObservables (const RooAbsCollection *depList, RooArgSet &outputSet, bool valueOnly=true) const |
Create a list of leaf nodes in the arg tree starting with ourself as top node that match any of the names the args in the supplied argset. | |
RooArgSet * | getObservables (const RooAbsData &data) const |
Return the observables of this pdf given the observables defined by data . | |
RooArgSet * | getObservables (const RooAbsData *data) const |
Create a list of leaf nodes in the arg tree starting with ourself as top node that match any of the names of the variable list of the supplied data set (the dependents). | |
RooArgSet * | getObservables (const RooArgSet &set, Bool_t valueOnly=kTRUE) const |
Given a set of possible observables, return the observables that this PDF depends on. | |
RooArgSet * | getObservables (const RooArgSet *depList, bool valueOnly=true) const |
Create a list of leaf nodes in the arg tree starting with ourself as top node that match any of the names the args in the supplied argset. | |
RooArgSet * | getParameters (const RooAbsData &data, bool stripDisconnected=true) const |
Return the parameters of this p.d.f when used in conjuction with dataset 'data'. | |
RooArgSet * | getParameters (const RooAbsData *data, bool stripDisconnected=true) const |
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of the names of the variable list of the supplied data set (the dependents). | |
RooArgSet * | getParameters (const RooArgSet &observables, bool stripDisconnected=true) const |
Return the parameters of the p.d.f given the provided set of observables. | |
RooArgSet * | getParameters (const RooArgSet *observables, bool stripDisconnected=true) const |
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of the names the args in the supplied argset. | |
virtual bool | getParameters (const RooArgSet *observables, RooArgSet &outputSet, bool stripDisconnected=true) const |
Fills a list with leaf nodes in the arg tree starting with ourself as top node that don't match any of the names the args in the supplied argset. | |
RooAbsProxy * | getProxy (Int_t index) const |
Return the nth proxy from the proxy list. | |
const Text_t * | getStringAttribute (const Text_t *key) const |
Get string attribute mapped under key 'key'. | |
Bool_t | getTransientAttribute (const Text_t *name) const |
Check if a named attribute is set. | |
RooArgSet * | getVariables (Bool_t stripDisconnected=kTRUE) const |
Return RooArgSet with all variables (tree leaf nodes of expresssion tree) | |
void | graphVizTree (const char *fileName, const char *delimiter="\n", bool useTitle=false, bool useLatex=false) |
Create a GraphViz .dot file visualizing the expression tree headed by this RooAbsArg object. | |
void | graphVizTree (std::ostream &os, const char *delimiter="\n", bool useTitle=false, bool useLatex=false) |
Write the GraphViz representation of the expression tree headed by this RooAbsArg object to the given ostream. | |
Bool_t | hasClients () const |
virtual Bool_t | hasRange (const char *) const |
virtual Bool_t | importWorkspaceHook (RooWorkspace &ws) |
virtual Bool_t | inRange (const char *) const |
virtual bool | isCategory () const |
Bool_t | isCloneOf (const RooAbsArg &other) const |
Check if this object was created as a clone of 'other'. | |
Bool_t | isConstant () const |
Check if the "Constant" attribute is set. | |
virtual Bool_t | isDerived () const |
Does value or shape of this arg depend on any other arg? | |
virtual bool | isReducerNode () const |
virtual Bool_t | IsSortable () const |
Bool_t | localNoDirtyInhibit () const |
const TNamed * | namePtr () const |
De-duplicated pointer to this object's name. | |
Int_t | numProxies () const |
Return the number of registered proxies. | |
Bool_t | observableOverlaps (const RooAbsData *dset, const RooAbsArg &testArg) const |
Test if any of the dependents of the arg tree (as determined by getObservables) overlaps with those of the testArg. | |
Bool_t | observableOverlaps (const RooArgSet *depList, const RooAbsArg &testArg) const |
Test if any of the dependents of the arg tree (as determined by getObservables) overlaps with those of the testArg. | |
RooAbsArg & | operator= (const RooAbsArg &other) |
Assign all boolean and string properties of the original object. | |
Bool_t | overlaps (const RooAbsArg &testArg, Bool_t valueOnly=kFALSE) const |
Test if any of the nodes of tree are shared with that of the given tree. | |
const RooArgSet * | ownedComponents () const |
virtual void | Print (Option_t *options=0) const |
Print the object to the defaultPrintStream(). | |
virtual void | printAddress (std::ostream &os) const |
Print class name of object. | |
virtual void | printArgs (std::ostream &os) const |
Print object arguments, ie its proxies. | |
virtual void | printClassName (std::ostream &os) const |
Print object class name. | |
void | printCompactTree (const char *indent="", const char *fileName=0, const char *namePat=0, RooAbsArg *client=0) |
Print tree structure of expression tree on stdout, or to file if filename is specified. | |
void | printCompactTree (std::ostream &os, const char *indent="", const char *namePat=0, RooAbsArg *client=0) |
Print tree structure of expression tree on given ostream. | |
virtual void | printCompactTreeHook (std::ostream &os, const char *ind="") |
Hook function interface for object to insert additional information when printed in the context of a tree structure. | |
void | printComponentTree (const char *indent="", const char *namePat=0, Int_t nLevel=999) |
Print tree structure of expression tree on given ostream, only branch nodes are printed. | |
void | printDirty (Bool_t depth=kTRUE) const |
Print information about current value dirty state information. | |
virtual void | printMetaArgs (std::ostream &) const |
virtual void | printName (std::ostream &os) const |
Print object name. | |
virtual void | printTitle (std::ostream &os) const |
Print object title. | |
virtual void | printTree (std::ostream &os, TString indent="") const |
Print object tree structure. | |
Bool_t | recursiveCheckObservables (const RooArgSet *nset) const |
Recursively call checkObservables on all nodes in the expression tree. | |
void | setAttribute (const Text_t *name, Bool_t value=kTRUE) |
Set (default) or clear a named boolean attribute of this object. | |
void | setDataToken (std::size_t index) |
Sets the token for retrieving results in the BatchMode. For internal use only. | |
void | setLocalNoDirtyInhibit (Bool_t flag) const |
void | SetName (const char *name) |
Set the name of the TNamed. | |
void | SetNameTitle (const char *name, const char *title) |
Set all the TNamed parameters (name and title). | |
void | setProhibitServerRedirect (Bool_t flag) |
void | setStringAttribute (const Text_t *key, const Text_t *value) |
Associate string 'value' to this object under key 'key'. | |
void | setTransientAttribute (const Text_t *name, Bool_t value=kTRUE) |
Set (default) or clear a named boolean attribute of this object. | |
void | setWorkspace (RooWorkspace &ws) |
const std::map< std::string, std::string > & | stringAttributes () const |
const std::set< std::string > & | transientAttributes () const |
TIterator * | clientIterator () const |
Retrieve a client iterator. | |
TIterator * | valueClientIterator () const |
TIterator * | shapeClientIterator () const |
TIterator * | serverIterator () const |
RooFIter | valueClientMIterator () const |
RooFIter | shapeClientMIterator () const |
RooFIter | serverMIterator () const |
RooArgSet * | getDependents (const RooArgSet &set) const |
RooArgSet * | getDependents (const RooAbsData *set) const |
RooArgSet * | getDependents (const RooArgSet *depList) const |
Bool_t | dependentOverlaps (const RooAbsData *dset, const RooAbsArg &testArg) const |
Bool_t | dependentOverlaps (const RooArgSet *depList, const RooAbsArg &testArg) const |
Bool_t | checkDependents (const RooArgSet *nset) const |
Bool_t | recursiveCheckDependents (const RooArgSet *nset) const |
const RefCountList_t & | clients () const |
List of all clients of this object. | |
const RefCountList_t & | valueClients () const |
List of all value clients of this object. Value clients receive value updates. | |
const RefCountList_t & | shapeClients () const |
List of all shape clients of this object. | |
const RefCountList_t & | servers () const |
List of all servers of this object. | |
RooAbsArg * | findServer (const char *name) const |
Return server of this with name name . Returns nullptr if not found. | |
RooAbsArg * | findServer (const RooAbsArg &arg) const |
Return server of this that has the same name as arg . Returns nullptr if not found. | |
RooAbsArg * | findServer (Int_t index) const |
Return i-th server from server list. | |
Bool_t | isValueServer (const RooAbsArg &arg) const |
Check if this is serving values to arg . | |
Bool_t | isValueServer (const char *name) const |
Check if this is serving values to an object with name name . | |
Bool_t | isShapeServer (const RooAbsArg &arg) const |
Check if this is serving shape to arg . | |
Bool_t | isShapeServer (const char *name) const |
Check if this is serving shape to an object with name name . | |
void | leafNodeServerList (RooAbsCollection *list, const RooAbsArg *arg=0, Bool_t recurseNonDerived=kFALSE) const |
Fill supplied list with all leaf nodes of the arg tree, starting with ourself as top node. | |
void | branchNodeServerList (RooAbsCollection *list, const RooAbsArg *arg=0, Bool_t recurseNonDerived=kFALSE) const |
Fill supplied list with all branch nodes of the arg tree starting with ourself as top node. | |
void | treeNodeServerList (RooAbsCollection *list, const RooAbsArg *arg=0, Bool_t doBranch=kTRUE, Bool_t doLeaf=kTRUE, Bool_t valueOnly=kFALSE, Bool_t recurseNonDerived=kFALSE) const |
Fill supplied list with nodes of the arg tree, following all server links, starting with ourself as top node. | |
virtual Bool_t | isFundamental () const |
Is this object a fundamental type that can be added to a dataset? Fundamental-type subclasses override this method to return kTRUE. | |
virtual Bool_t | isLValue () const |
Is this argument an l-value, i.e., can it appear on the left-hand side of an assignment expression? LValues are also special since they can potentially be analytically integrated and generated. | |
Bool_t | redirectServers (const RooAbsCollection &newServerList, Bool_t mustReplaceAll=kFALSE, Bool_t nameChange=kFALSE, Bool_t isRecursionStep=kFALSE) |
Replace all direct servers of this object with the new servers in newServerList . | |
Bool_t | recursiveRedirectServers (const RooAbsCollection &newServerList, Bool_t mustReplaceAll=kFALSE, Bool_t nameChange=kFALSE, Bool_t recurseInNewSet=kTRUE) |
Recursively replace all servers with the new servers in newSet . | |
virtual void | serverNameChangeHook (const RooAbsArg *, const RooAbsArg *) |
void | addServer (RooAbsArg &server, Bool_t valueProp=kTRUE, Bool_t shapeProp=kFALSE, std::size_t refCount=1) |
Register another RooAbsArg as a server to us, ie, declare that we depend on it. | |
void | addServerList (RooAbsCollection &serverList, Bool_t valueProp=kTRUE, Bool_t shapeProp=kFALSE) |
Register a list of RooAbsArg as servers to us by calling addServer() for each arg in the list. | |
void | replaceServer (RooAbsArg &oldServer, RooAbsArg &newServer, Bool_t valueProp, Bool_t shapeProp) |
Replace 'oldServer' with 'newServer'. | |
void | changeServer (RooAbsArg &server, Bool_t valueProp, Bool_t shapeProp) |
Change dirty flag propagation mask for specified server. | |
void | removeServer (RooAbsArg &server, Bool_t force=kFALSE) |
Unregister another RooAbsArg as a server to us, ie, declare that we no longer depend on its value and shape. | |
RooAbsArg * | findNewServer (const RooAbsCollection &newSet, Bool_t nameChange) const |
Find the new server in the specified set that matches the old server. | |
virtual void | optimizeCacheMode (const RooArgSet &observables) |
Activate cache mode optimization with given definition of observables. | |
virtual void | optimizeCacheMode (const RooArgSet &observables, RooArgSet &optNodes, RooLinkedList &processedNodes) |
Activate cache mode optimization with given definition of observables. | |
Bool_t | findConstantNodes (const RooArgSet &observables, RooArgSet &cacheList) |
Find branch nodes with all-constant parameters, and add them to the list of nodes that can be cached with a dataset in a test statistic calculation. | |
Bool_t | findConstantNodes (const RooArgSet &observables, RooArgSet &cacheList, RooLinkedList &processedNodes) |
Find branch nodes with all-constant parameters, and add them to the list of nodes that can be cached with a dataset in a test statistic calculation. | |
virtual void | constOptimizeTestStatistic (ConstOpCode opcode, Bool_t doAlsoTrackingOpt=kTRUE) |
Interface function signaling a request to perform constant term optimization. | |
virtual CacheMode | canNodeBeCached () const |
virtual void | setCacheAndTrackHints (RooArgSet &) |
Bool_t | isShapeDirty () const |
Bool_t | isValueDirty () const |
Bool_t | isValueDirtyAndClear () const |
Bool_t | isValueOrShapeDirtyAndClear () const |
void | registerCache (RooAbsCache &cache) |
Register RooAbsCache with this object. | |
void | unRegisterCache (RooAbsCache &cache) |
Unregister a RooAbsCache. Called from the RooAbsCache destructor. | |
Int_t | numCaches () const |
Return number of registered caches. | |
RooAbsCache * | getCache (Int_t index) const |
Return registered cache object by index. | |
OperMode | operMode () const |
Query the operation mode of this node. | |
void | setOperMode (OperMode mode, Bool_t recurseADirty=kTRUE) |
Set the operation mode of this node. | |
void | setValueDirty () |
Mark the element dirty. This forces a re-evaluation when a value is requested. | |
void | setShapeDirty () |
Notify that a shape-like property (e.g. binning) has changed. | |
const char * | aggregateCacheUniqueSuffix () const |
virtual const char * | cacheUniqueSuffix () const |
void | wireAllCaches () |
RooExpensiveObjectCache & | expensiveObjectCache () const |
virtual void | setExpensiveObjectCache (RooExpensiveObjectCache &cache) |
Public Member Functions inherited from TNamed | |
TNamed () | |
TNamed (const char *name, const char *title) | |
TNamed (const TNamed &named) | |
TNamed copy ctor. | |
TNamed (const TString &name, const TString &title) | |
virtual | ~TNamed () |
TNamed destructor. | |
virtual void | Clear (Option_t *option="") |
Set name and title to empty strings (""). | |
virtual void | Copy (TObject &named) const |
Copy this to obj. | |
virtual void | FillBuffer (char *&buffer) |
Encode TNamed into output buffer. | |
virtual const char * | GetName () const |
Returns name of object. | |
virtual const char * | GetTitle () const |
Returns title of object. | |
virtual ULong_t | Hash () const |
Return hash value for this object. | |
virtual void | ls (Option_t *option="") const |
List TNamed name and title. | |
TNamed & | operator= (const TNamed &rhs) |
TNamed assignment operator. | |
virtual void | SetTitle (const char *title="") |
Set the title of the TNamed. | |
virtual Int_t | Sizeof () const |
Return size of the TNamed part of the TObject. | |
Public Member Functions inherited from TObject | |
TObject () | |
TObject constructor. | |
TObject (const TObject &object) | |
TObject copy ctor. | |
virtual | ~TObject () |
TObject destructor. | |
void | AbstractMethod (const char *method) const |
Use this method to implement an "abstract" method that you don't want to leave purely abstract. | |
virtual void | AppendPad (Option_t *option="") |
Append graphics object to current pad. | |
virtual void | Browse (TBrowser *b) |
Browse object. May be overridden for another default action. | |
ULong_t | CheckedHash () |
Check and record whether this class has a consistent Hash/RecursiveRemove setup (*) and then return the regular Hash value for this object. | |
virtual const char * | ClassName () const |
Returns name of class to which the object belongs. | |
virtual void | Delete (Option_t *option="") |
Delete this object. | |
virtual Int_t | DistancetoPrimitive (Int_t px, Int_t py) |
Computes distance from point (px,py) to the object. | |
virtual void | Draw (Option_t *option="") |
Default Draw method for all objects. | |
virtual void | DrawClass () const |
Draw class inheritance tree of the class to which this object belongs. | |
virtual TObject * | DrawClone (Option_t *option="") const |
Draw a clone of this object in the current selected pad for instance with: gROOT->SetSelectedPad(gPad) . | |
virtual void | Dump () const |
Dump contents of object on stdout. | |
virtual void | Error (const char *method, const char *msgfmt,...) const |
Issue error message. | |
virtual void | Execute (const char *method, const char *params, Int_t *error=0) |
Execute method on this object with the given parameter string, e.g. | |
virtual void | Execute (TMethod *method, TObjArray *params, Int_t *error=0) |
Execute method on this object with parameters stored in the TObjArray. | |
virtual void | ExecuteEvent (Int_t event, Int_t px, Int_t py) |
Execute action corresponding to an event at (px,py). | |
virtual void | Fatal (const char *method, const char *msgfmt,...) const |
Issue fatal error message. | |
virtual TObject * | FindObject (const char *name) const |
Must be redefined in derived classes. | |
virtual TObject * | FindObject (const TObject *obj) const |
Must be redefined in derived classes. | |
virtual Option_t * | GetDrawOption () const |
Get option used by the graphics system to draw this object. | |
virtual const char * | GetIconName () const |
Returns mime type name of object. | |
virtual char * | GetObjectInfo (Int_t px, Int_t py) const |
Returns string containing info about the object at position (px,py). | |
virtual Option_t * | GetOption () const |
virtual UInt_t | GetUniqueID () const |
Return the unique object id. | |
virtual Bool_t | HandleTimer (TTimer *timer) |
Execute action in response of a timer timing out. | |
Bool_t | HasInconsistentHash () const |
Return true is the type of this object is known to have an inconsistent setup for Hash and RecursiveRemove (i.e. | |
virtual void | Info (const char *method, const char *msgfmt,...) const |
Issue info message. | |
virtual Bool_t | InheritsFrom (const char *classname) const |
Returns kTRUE if object inherits from class "classname". | |
virtual Bool_t | InheritsFrom (const TClass *cl) const |
Returns kTRUE if object inherits from TClass cl. | |
virtual void | Inspect () const |
Dump contents of this object in a graphics canvas. | |
void | InvertBit (UInt_t f) |
Bool_t | IsDestructed () const |
IsDestructed. | |
virtual Bool_t | IsEqual (const TObject *obj) const |
Default equal comparison (objects are equal if they have the same address in memory). | |
virtual Bool_t | IsFolder () const |
Returns kTRUE in case object contains browsable objects (like containers or lists of other objects). | |
R__ALWAYS_INLINE Bool_t | IsOnHeap () const |
R__ALWAYS_INLINE Bool_t | IsZombie () const |
void | MayNotUse (const char *method) const |
Use this method to signal that a method (defined in a base class) may not be called in a derived class (in principle against good design since a child class should not provide less functionality than its parent, however, sometimes it is necessary). | |
virtual Bool_t | Notify () |
This method must be overridden to handle object notification. | |
void | Obsolete (const char *method, const char *asOfVers, const char *removedFromVers) const |
Use this method to declare a method obsolete. | |
void | operator delete (void *ptr) |
Operator delete. | |
void | operator delete[] (void *ptr) |
Operator delete []. | |
void * | operator new (size_t sz) |
void * | operator new (size_t sz, void *vp) |
void * | operator new[] (size_t sz) |
void * | operator new[] (size_t sz, void *vp) |
TObject & | operator= (const TObject &rhs) |
TObject assignment operator. | |
virtual void | Paint (Option_t *option="") |
This method must be overridden if a class wants to paint itself. | |
virtual void | Pop () |
Pop on object drawn in a pad to the top of the display list. | |
virtual Int_t | Read (const char *name) |
Read contents of object with specified name from the current directory. | |
virtual void | RecursiveRemove (TObject *obj) |
Recursively remove this object from a list. | |
void | ResetBit (UInt_t f) |
virtual void | SaveAs (const char *filename="", Option_t *option="") const |
Save this object in the file specified by filename. | |
virtual void | SavePrimitive (std::ostream &out, Option_t *option="") |
Save a primitive as a C++ statement(s) on output stream "out". | |
void | SetBit (UInt_t f) |
void | SetBit (UInt_t f, Bool_t set) |
Set or unset the user status bits as specified in f. | |
virtual void | SetDrawOption (Option_t *option="") |
Set drawing option for object. | |
virtual void | SetUniqueID (UInt_t uid) |
Set the unique object id. | |
virtual void | SysError (const char *method, const char *msgfmt,...) const |
Issue system error message. | |
R__ALWAYS_INLINE Bool_t | TestBit (UInt_t f) const |
Int_t | TestBits (UInt_t f) const |
virtual void | UseCurrentStyle () |
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyle or TROOT::ForceStyle have been invoked. | |
virtual void | Warning (const char *method, const char *msgfmt,...) const |
Issue warning message. | |
virtual Int_t | Write (const char *name=0, Int_t option=0, Int_t bufsize=0) |
Write this object to the current directory. | |
virtual Int_t | Write (const char *name=0, Int_t option=0, Int_t bufsize=0) const |
Write this object to the current directory. | |
Public Member Functions inherited from RooPrintable | |
RooPrintable () | |
virtual | ~RooPrintable () |
virtual StyleOption | defaultPrintStyle (Option_t *opt) const |
virtual void | printExtras (std::ostream &os) const |
Interface to print extras of object. | |
virtual void | printStream (std::ostream &os, Int_t contents, StyleOption style, TString indent="") const |
Print description of object on ostream, printing contents set by contents integer, which is interpreted as an OR of 'enum ContentsOptions' values and in the style given by 'enum StyleOption'. | |
Static Public Member Functions | |
static RooNumGenConfig * | defaultGeneratorConfig () |
Returns the default numeric MC generator configuration for all RooAbsReals. | |
static int | verboseEval () |
Return global level of verbosity for p.d.f. evaluations. | |
static void | verboseEval (Int_t stat) |
Change global level of verbosity for p.d.f. evaluations. | |
Static Public Member Functions inherited from RooAbsReal | |
static void | clearEvalErrorLog () |
Clear the stack of evaluation error messages. | |
static RooNumIntConfig * | defaultIntegratorConfig () |
Returns the default numeric integration configuration for all RooAbsReals. | |
static EvalErrorIter | evalErrorIter () |
static ErrorLoggingMode | evalErrorLoggingMode () |
Return current evaluation error logging mode. | |
static Bool_t | hideOffset () |
static void | logEvalError (const RooAbsReal *originator, const char *origName, const char *message, const char *serverValueString=0) |
Interface to insert remote error logging messages received by RooRealMPFE into current error loggin stream. | |
static Int_t | numEvalErrorItems () |
static Int_t | numEvalErrors () |
Return the number of logged evaluation errors since the last clearing. | |
static void | printEvalErrors (std::ostream &os=std::cout, Int_t maxPerNode=10000000) |
Print all outstanding logged evaluation error on the given ostream. | |
static void | setEvalErrorLoggingMode (ErrorLoggingMode m) |
Set evaluation error logging mode. | |
static void | setHideOffset (Bool_t flag) |
Static Public Member Functions inherited from RooAbsArg | |
static void | setDirtyInhibit (Bool_t flag) |
Control global dirty inhibit mode. | |
static void | verboseDirty (Bool_t flag) |
Activate verbose messaging related to dirty flag propagation. | |
Static Public Member Functions inherited from TObject | |
static Longptr_t | GetDtorOnly () |
Return destructor only flag. | |
static Bool_t | GetObjectStat () |
Get status of object stat flag. | |
static void | SetDtorOnly (void *obj) |
Set destructor only flag. | |
static void | SetObjectStat (Bool_t stat) |
Turn on/off tracking of objects in the TObjectTable. | |
Static Public Member Functions inherited from RooPrintable | |
static std::ostream & | defaultPrintStream (std::ostream *os=0) |
Return a reference to the current default stream to use in Print(). | |
static void | nameFieldLength (Int_t newLen) |
Set length of field reserved from printing name of RooAbsArgs in multi-line collection printing to given amount. | |
Protected Member Functions | |
RooAbsPdf (const RooAbsPdf &other, const char *name=0) | |
Copy constructor. | |
double | normalizeWithNaNPacking (double rawVal, double normVal) const |
virtual RooPlot * | plotOn (RooPlot *frame, PlotOpt o) const |
Plot oneself on 'frame'. | |
Int_t * | randomizeProtoOrder (Int_t nProto, Int_t nGen, Bool_t resample=kFALSE) const |
Return lookup table with randomized order for nProto prototype events. | |
virtual Bool_t | redirectServersHook (const RooAbsCollection &, Bool_t, Bool_t, Bool_t) |
Function that is called at the end of redirectServers(). | |
virtual Bool_t | syncNormalization (const RooArgSet *dset, Bool_t adjustProxies=kTRUE) const |
Verify that the normalization integral cached with this PDF is valid for given set of normalization observables. | |
Protected Member Functions inherited from RooAbsReal | |
virtual void | attachToTree (TTree &t, Int_t bufSize=32000) |
Attach object to a branch of given TTree. | |
virtual void | attachToVStore (RooVectorDataStore &vstore) |
RooFitResult * | chi2FitDriver (RooAbsReal &fcn, RooLinkedList &cmdList) |
Internal driver function for chi2 fits. | |
virtual void | copyCache (const RooAbsArg *source, Bool_t valueOnly=kFALSE, Bool_t setValDirty=kTRUE) |
Copy the cached value of another RooAbsArg to our cache. | |
RooAbsReal * | createIntObj (const RooArgSet &iset, const RooArgSet *nset, const RooNumIntConfig *cfg, const char *rangeName) const |
Internal utility function for createIntegral() that creates the actual integral object. | |
virtual Double_t | evaluate () const =0 |
Evaluate this PDF / function / constant. Needs to be overridden by all derived classes. | |
virtual RooSpan< double > | evaluateBatch (std::size_t, std::size_t)=delete |
virtual RooSpan< double > | evaluateSpan (RooBatchCompute::RunContext &evalData, const RooArgSet *normSet) const |
Evaluate this object for a batch/span of data points. | |
virtual void | fillTreeBranch (TTree &t) |
Fill the tree branch that associated with this object with its current value. | |
void | findInnerMostIntegration (const RooArgSet &allObs, RooArgSet &innerObs, const char *rangeName) const |
Utility function for createIntObj() that aids in the construct of recursive integrals over functions with multiple observables with parameterized ranges. | |
TString | integralNameSuffix (const RooArgSet &iset, const RooArgSet *nset=0, const char *rangeName=0, Bool_t omitEmpty=kFALSE) const |
Construct string with unique suffix name to give to integral object that encodes integrated observables, normalization observables and the integration range name. | |
Bool_t | isSelectedComp () const |
If true, the current pdf is a selected component (for use in plotting) | |
virtual bool | isValid () const |
Check if current value is valid. | |
virtual bool | isValidReal (double, bool printError=false) const |
Interface function to check if given value is a valid value for this object. Returns true unless overridden. | |
void | makeProjectionSet (const RooAbsArg *plotVar, const RooArgSet *allVars, RooArgSet &projectedVars, Bool_t silent) const |
Utility function for plotOn() that constructs the set of observables to project when plotting ourselves as function of 'plotVar'. | |
Bool_t | matchArgs (const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgProxy &a) const |
Utility function for use in getAnalyticalIntegral(). | |
Bool_t | matchArgs (const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgProxy &a, const RooArgProxy &b) const |
Utility function for use in getAnalyticalIntegral(). | |
Bool_t | matchArgs (const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgProxy &a, const RooArgProxy &b, const RooArgProxy &c) const |
Utility function for use in getAnalyticalIntegral(). | |
Bool_t | matchArgs (const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgProxy &a, const RooArgProxy &b, const RooArgProxy &c, const RooArgProxy &d) const |
Utility function for use in getAnalyticalIntegral(). | |
Bool_t | matchArgs (const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgSet &set) const |
Utility function for use in getAnalyticalIntegral(). | |
virtual RooPlot * | plotAsymOn (RooPlot *frame, const RooAbsCategoryLValue &asymCat, PlotOpt o) const |
void | plotOnCompSelect (RooArgSet *selNodes) const |
Helper function for plotting of composite p.d.fs. | |
RooPlot * | plotOnWithErrorBand (RooPlot *frame, const RooFitResult &fr, Double_t Z, const RooArgSet *params, const RooLinkedList &argList, Bool_t method1) const |
Plot function or PDF on frame with support for visualization of the uncertainty encoded in the given fit result fr. | |
Bool_t | plotSanityChecks (RooPlot *frame) const |
Utility function for plotOn(), perform general sanity check on frame to ensure safe plotting operations. | |
void | selectComp (Bool_t flag) |
virtual void | selectNormalization (const RooArgSet *depSet=0, Bool_t force=kFALSE) |
Interface function to force use of a given set of observables to interpret function value. | |
virtual void | selectNormalizationRange (const char *rangeName=0, Bool_t force=kFALSE) |
Interface function to force use of a given normalization range to interpret function value. | |
virtual void | setTreeBranchStatus (TTree &t, Bool_t active) |
(De)Activate associated tree branch | |
virtual void | syncCache (const RooArgSet *set=0) |
Double_t | traceEval (const RooArgSet *set) const |
Calculate current value of object, with error tracing wrapper. | |
Protected Member Functions inherited from RooAbsArg | |
void | attachToStore (RooAbsDataStore &store) |
Attach this argument to the data store such that it reads data from there. | |
TString | cleanBranchName () const |
Construct a mangled name from the actual name that is free of any math symbols that might be interpreted by TTree. | |
void | clearShapeDirty () const |
void | clearValueAndShapeDirty () const |
void | clearValueDirty () const |
virtual void | getObservablesHook (const RooArgSet *, RooArgSet *) const |
virtual void | getParametersHook (const RooArgSet *, RooArgSet *, Bool_t) const |
void | graphVizAddConnections (std::set< std::pair< RooAbsArg *, RooAbsArg * > > &) |
Utility function that inserts all point-to-point client-server connections between any two RooAbsArgs in the expression tree headed by this object in the linkSet argument. | |
Bool_t | inhibitDirty () const |
Delete watch flag. | |
virtual void | ioStreamerPass2 () |
Method called by workspace container to finalize schema evolution issues that cannot be handled in a single ioStreamer pass. | |
virtual void | operModeHook () |
virtual void | optimizeDirtyHook (const RooArgSet *) |
void | printAttribList (std::ostream &os) const |
Transient boolean attributes (not copied in ctor) | |
void | registerProxy (RooArgProxy &proxy) |
Register an RooArgProxy in the proxy list. | |
void | registerProxy (RooListProxy &proxy) |
Register an RooListProxy in the proxy list. | |
void | registerProxy (RooSetProxy &proxy) |
Register an RooSetProxy in the proxy list. | |
void | setProxyNormSet (const RooArgSet *nset) |
Forward a change in the cached normalization argset to all the registered proxies. | |
void | setShapeDirty (const RooAbsArg *source) |
Notify that a shape-like property (e.g. binning) has changed. | |
void | setValueDirty (const RooAbsArg *source) |
Force element to re-evaluate itself when a value is requested. | |
void | unRegisterProxy (RooArgProxy &proxy) |
Remove proxy from proxy list. | |
void | unRegisterProxy (RooListProxy &proxy) |
Remove proxy from proxy list. | |
void | unRegisterProxy (RooSetProxy &proxy) |
Remove proxy from proxy list. | |
Protected Member Functions inherited from TObject | |
virtual void | DoError (int level, const char *location, const char *fmt, va_list va) const |
Interface to ErrorHandler (protected). | |
void | MakeZombie () |
Static Protected Attributes | |
static TString | _normRangeOverride |
static Int_t | _verboseEval = 0 |
Static Protected Attributes inherited from RooAbsReal | |
static Bool_t | _globalSelectComp = false |
Component selection flag for RooAbsPdf::plotCompOn. | |
static Bool_t | _hideOffset = kTRUE |
Static Protected Attributes inherited from RooAbsArg | |
static Bool_t | _inhibitDirty |
static Bool_t | _verboseDirty |
cache of the list of proxies. Avoids type casting. | |
Static Protected Attributes inherited from RooPrintable | |
static Int_t | _nameLength |
Private Member Functions | |
int | calcAsymptoticCorrectedCovariance (RooMinimizer &minimizer, RooAbsData const &data) |
Use the asymptotically correct approach to estimate errors in the presence of weights. | |
int | calcSumW2CorrectedCovariance (RooMinimizer &minimizer, RooAbsReal &nll) const |
Apply correction to errors and covariance matrix. | |
RooDataSet * | generate (RooAbsGenContext &context, const RooArgSet &whatVars, const RooDataSet *prototype, Double_t nEvents, Bool_t verbose, Bool_t randProtoOrder, Bool_t resampleProto, Bool_t skipInit=kFALSE, Bool_t extended=kFALSE) const |
Internal method. | |
void | logBatchComputationErrors (RooSpan< const double > &outputs, std::size_t begin) const |
Scan through outputs and fix+log all nans and negative values. | |
virtual RooPlot * | paramOn (RooPlot *frame, const RooArgSet ¶ms, Bool_t showConstants=kFALSE, const char *label="", Int_t sigDigits=2, Option_t *options="NELU", Double_t xmin=0.65, Double_t xmax=0.99, Double_t ymax=0.95, const RooCmdArg *formatCmd=0) |
Add a text box with the current parameter values and their errors to the frame. | |
Bool_t | traceEvalPdf (Double_t value) const |
Check that passed value is positive and not 'not-a-number'. | |
Friends | |
class | CacheElem |
The cache manager. | |
class | RooAbsAnaConvPdf |
class | RooAddGenContext |
class | RooAddGenContextOrig |
class | RooConvGenContext |
class | RooEffGenContext |
class | RooExtendPdf |
class | RooMCStudy |
class | RooProdGenContext |
class | RooProdPdf |
class | RooRealIntegral |
class | RooSimGenContext |
class | RooSimSplitGenContext |
class | RooSimultaneous |
Additional Inherited Members | |
Protected Types inherited from TObject | |
enum | { kOnlyPrepStep = BIT(3) } |
Static Protected Member Functions inherited from RooAbsReal | |
static void | globalSelectComp (Bool_t flag) |
Global switch controlling the activation of the selectComp() functionality. | |
Static Protected Member Functions inherited from RooAbsArg | |
static void | ioStreamerPass2Finalize () |
Method called by workspace container to finalize schema evolution issues that cannot be handled in a single ioStreamer pass. | |
#include <RooAbsPdf.h>
Enumerator | |
---|---|
CanNotBeExtended | |
CanBeExtended | |
MustBeExtended |
Definition at line 256 of file RooAbsPdf.h.
RooAbsPdf::RooAbsPdf | ( | ) |
Default constructor.
Definition at line 255 of file RooAbsPdf.cxx.
RooAbsPdf::RooAbsPdf | ( | const char * | name, |
const char * | title = 0 |
||
) |
Constructor with name and title only.
Definition at line 269 of file RooAbsPdf.cxx.
Constructor with name, title, and plot range.
Definition at line 281 of file RooAbsPdf.cxx.
|
virtual |
Destructor.
Definition at line 313 of file RooAbsPdf.cxx.
|
protected |
Copy constructor.
Definition at line 294 of file RooAbsPdf.cxx.
|
virtual |
Analytical integral with normalization (see RooAbsReal::analyticalIntegralWN() for further information)
This function applies the normalization specified by 'normSet' to the integral returned by RooAbsReal::analyticalIntegral(). The passthrough scenario (code=0) is also changed to return a normalized answer
Reimplemented from RooAbsReal.
Reimplemented in RooNormalizedPdf, RooBinSamplingPdf, RooWrapperPdf, RooAddModel, RooExtendPdf, RooProdPdf, RooProjectedPdf, RooRealSumPdf, RooSimultaneous, and RooAddPdf.
Definition at line 427 of file RooAbsPdf.cxx.
|
virtual |
Reimplemented in RooSimultaneous.
Definition at line 1941 of file RooAbsPdf.cxx.
|
virtual |
Return a binned generator context.
Definition at line 1922 of file RooAbsPdf.cxx.
|
private |
Use the asymptotically correct approach to estimate errors in the presence of weights.
This is slower but more accurate than SumW2Error
. See also https://arxiv.org/abs/1911.01303). Applies the calculated covaraince matrix to the RooMinimizer and returns the quality of the covariance matrix. See also the documentation of RooAbsPdf::fitTo(), where this function is used.
[in] | minimizer | The RooMinimizer to get the fit result from. The state of the minimizer will be altered by this function: the covariance matrix caltulated here will be applied to it via RooMinimizer::applyCovarianceMatrix(). |
[in] | data | The dataset that was used for the fit. |
Definition at line 1207 of file RooAbsPdf.cxx.
|
private |
Apply correction to errors and covariance matrix.
This uses two covariance matrices, one with the weights, the other with squared weights, to obtain the correct errors for weighted likelihood fits. Applies the calculated covaraince matrix to the RooMinimizer and returns the quality of the covariance matrix. See also the documentation of RooAbsPdf::fitTo(), where this function is used.
[in] | minimizer | The RooMinimizer to get the fit result from. The state of the minimizer will be altered by this function: the covariance matrix caltulated here will be applied to it via RooMinimizer::applyCovarianceMatrix(). |
[in] | nll | The NLL object that was used for the fit. |
Definition at line 1287 of file RooAbsPdf.cxx.
|
inline |
If true, PDF can provide extended likelihood term.
Definition at line 262 of file RooAbsPdf.h.
|
virtual |
Perform a \( \chi^2 \) fit to given histogram.
By default the fit is executed through the MINUIT commands MIGRAD, HESSE in succession
The following named arguments are supported
Options to control construction of chi2 | |
---|---|
Range(const char* name) | Fit only data inside range with given name |
Range(Double_t lo, Double_t hi) | Fit only data inside given range. A range named "fit" is created on the fly on all observables. Multiple comma separated range names can be specified. |
NumCPU(int num) | Parallelize NLL calculation on num CPUs |
Optimize(Bool_t flag) | Activate constant term optimization (on by default) |
IntegrateBins() | Integrate PDF within each bin. This sets the desired precision. |
Options to control flow of fit procedure | |
InitialHesse(Bool_t flag) | Flag controls if HESSE before MIGRAD as well, off by default |
Hesse(Bool_t flag) | Flag controls if HESSE is run after MIGRAD, on by default |
Minos(Bool_t flag) | Flag controls if MINOS is run after HESSE, on by default |
Minos(const RooArgSet& set) | Only run MINOS on given subset of arguments |
Save(Bool_t flag) | Flac controls if RooFitResult object is produced and returned, off by default |
Strategy(Int_t flag) | Set Minuit strategy (0 through 2, default is 1) |
FitOptions(const char* optStr) | Steer fit with classic options string (for backward compatibility). Use of this option excludes use of any of the new style steering options. |
Options to control informational output | |
Verbose(Bool_t flag) | Flag controls if verbose output is printed (NLL, parameter changes during fit |
Timer(Bool_t flag) | Time CPU and wall clock consumption of fit steps, off by default |
PrintLevel(Int_t level) | Set Minuit print level (-1 through 3, default is 1). At -1 all RooFit informational messages are suppressed as well |
Warnings(Bool_t flag) | Enable or disable MINUIT warnings (enabled by default) |
PrintEvalErrors(Int_t numErr) | Control number of p.d.f evaluation errors printed per likelihood evaluation. A negative value suppress output completely, a zero value will only print the error count per p.d.f component, a positive value is will print details of each error up to numErr messages per p.d.f component. |
Reimplemented from RooAbsReal.
Definition at line 184 of file RooAbsReal.cxx.
|
virtual |
Perform a \( \chi^2 \) fit to given histogram.
By default the fit is executed through the MINUIT commands MIGRAD, HESSE in succession
The following named arguments are supported
Options to control construction of chi2 | |
---|---|
Range(const char* name) | Fit only data inside range with given name |
Range(Double_t lo, Double_t hi) | Fit only data inside given range. A range named "fit" is created on the fly on all observables. Multiple comma separated range names can be specified. |
NumCPU(int num) | Parallelize NLL calculation on num CPUs |
Optimize(Bool_t flag) | Activate constant term optimization (on by default) |
IntegrateBins() | Integrate PDF within each bin. This sets the desired precision. |
Options to control flow of fit procedure | |
InitialHesse(Bool_t flag) | Flag controls if HESSE before MIGRAD as well, off by default |
Hesse(Bool_t flag) | Flag controls if HESSE is run after MIGRAD, on by default |
Minos(Bool_t flag) | Flag controls if MINOS is run after HESSE, on by default |
Minos(const RooArgSet& set) | Only run MINOS on given subset of arguments |
Save(Bool_t flag) | Flac controls if RooFitResult object is produced and returned, off by default |
Strategy(Int_t flag) | Set Minuit strategy (0 through 2, default is 1) |
FitOptions(const char* optStr) | Steer fit with classic options string (for backward compatibility). Use of this option excludes use of any of the new style steering options. |
Options to control informational output | |
Verbose(Bool_t flag) | Flag controls if verbose output is printed (NLL, parameter changes during fit |
Timer(Bool_t flag) | Time CPU and wall clock consumption of fit steps, off by default |
PrintLevel(Int_t level) | Set Minuit print level (-1 through 3, default is 1). At -1 all RooFit informational messages are suppressed as well |
Warnings(Bool_t flag) | Enable or disable MINUIT warnings (enabled by default) |
PrintEvalErrors(Int_t numErr) | Control number of p.d.f evaluation errors printed per likelihood evaluation. A negative value suppress output completely, a zero value will only print the error count per p.d.f component, a positive value is will print details of each error up to numErr messages per p.d.f component. |
Reimplemented from RooAbsReal.
Definition at line 187 of file RooAbsReal.cxx.
|
virtual |
Calls RooAbsPdf::createChi2(RooDataSet& data, const RooLinkedList& cmdList) and returns fit result.
Reimplemented from RooAbsReal.
Definition at line 1735 of file RooAbsPdf.cxx.
|
virtual |
Perform a 2-D \( \chi^2 \) fit using a series of x and y values stored in the dataset xydata
.
The y values can either be the event weights, or can be another column designated by the YVar() argument. The y value must have errors defined for the \( \chi^2 \) to be well defined.
Options to control construction of the \( \chi^2 \) | |
---|---|
YVar(RooRealVar& yvar) | Designate given column in dataset as Y value |
Integrate(Bool_t flag) | Integrate function over range specified by X errors rather than take value at bin center. |
Options to control flow of fit procedure | |
InitialHesse(Bool_t flag) | Flag controls if HESSE before MIGRAD as well, off by default |
Hesse(Bool_t flag) | Flag controls if HESSE is run after MIGRAD, on by default |
Minos(Bool_t flag) | Flag controls if MINOS is run after HESSE, on by default |
Minos(const RooArgSet& set) | Only run MINOS on given subset of arguments |
Save(Bool_t flag) | Flac controls if RooFitResult object is produced and returned, off by default |
Strategy(Int_t flag) | Set Minuit strategy (0 through 2, default is 1) |
FitOptions(const char* optStr) | Steer fit with classic options string (for backward compatibility). Use of this option excludes use of any of the new style steering options. |
Options to control informational output | |
Verbose(Bool_t flag) | Flag controls if verbose output is printed (NLL, parameter changes during fit |
Timer(Bool_t flag) | Time CPU and wall clock consumption of fit steps, off by default |
PrintLevel(Int_t level) | Set Minuit print level (-1 through 3, default is 1). At -1 all RooFit informational messages are suppressed as well |
Warnings(Bool_t flag) | Enable or disable MINUIT warnings (enabled by default) |
PrintEvalErrors(Int_t numErr) | Control number of p.d.f evaluation errors printed per likelihood evaluation. A negative value suppress output completely, a zero value will only print the error count per p.d.f component, a positive value is will print details of each error up to numErr messages per p.d.f component. |
The RooAbsReal::chi2FitTo() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Reimplemented from RooAbsReal.
Definition at line 195 of file RooAbsReal.cxx.
|
virtual |
Perform a 2-D \( \chi^2 \) fit using a series of x and y values stored in the dataset xydata
.
The y values can either be the event weights, or can be another column designated by the YVar() argument. The y value must have errors defined for the \( \chi^2 \) to be well defined.
Options to control construction of the \( \chi^2 \) | |
---|---|
YVar(RooRealVar& yvar) | Designate given column in dataset as Y value |
Integrate(Bool_t flag) | Integrate function over range specified by X errors rather than take value at bin center. |
Options to control flow of fit procedure | |
InitialHesse(Bool_t flag) | Flag controls if HESSE before MIGRAD as well, off by default |
Hesse(Bool_t flag) | Flag controls if HESSE is run after MIGRAD, on by default |
Minos(Bool_t flag) | Flag controls if MINOS is run after HESSE, on by default |
Minos(const RooArgSet& set) | Only run MINOS on given subset of arguments |
Save(Bool_t flag) | Flac controls if RooFitResult object is produced and returned, off by default |
Strategy(Int_t flag) | Set Minuit strategy (0 through 2, default is 1) |
FitOptions(const char* optStr) | Steer fit with classic options string (for backward compatibility). Use of this option excludes use of any of the new style steering options. |
Options to control informational output | |
Verbose(Bool_t flag) | Flag controls if verbose output is printed (NLL, parameter changes during fit |
Timer(Bool_t flag) | Time CPU and wall clock consumption of fit steps, off by default |
PrintLevel(Int_t level) | Set Minuit print level (-1 through 3, default is 1). At -1 all RooFit informational messages are suppressed as well |
Warnings(Bool_t flag) | Enable or disable MINUIT warnings (enabled by default) |
PrintEvalErrors(Int_t numErr) | Control number of p.d.f evaluation errors printed per likelihood evaluation. A negative value suppress output completely, a zero value will only print the error count per p.d.f component, a positive value is will print details of each error up to numErr messages per p.d.f component. |
The RooAbsReal::chi2FitTo() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Reimplemented from RooAbsReal.
Definition at line 198 of file RooAbsReal.cxx.
RooAbsReal * RooAbsPdf::createCdf | ( | const RooArgSet & | iset, |
const RooArgSet & | nset = RooArgSet() |
||
) |
Create a cumulative distribution function of this p.d.f in terms of the observables listed in iset.
If no nset argument is given the c.d.f normalization is constructed over the integrated observables, so that its maximum value is precisely 1. It is also possible to choose a different normalization for multi-dimensional p.d.f.s: eg. for a pdf f(x,y,z) one can construct a partial cdf c(x,y) that only when integrated itself over z results in a maximum value of 1. To construct such a cdf pass z as argument to the optional nset argument
Definition at line 3345 of file RooAbsPdf.cxx.
RooAbsPdf::createCdf | ( | const RooArgSet & | iset, |
const RooCmdArg & | arg1, | ||
const RooCmdArg & | arg2 = RooCmdArg::none() , |
||
const RooCmdArg & | arg3 = RooCmdArg::none() , |
||
const RooCmdArg & | arg4 = RooCmdArg::none() , |
||
const RooCmdArg & | arg5 = RooCmdArg::none() , |
||
const RooCmdArg & | arg6 = RooCmdArg::none() , |
||
const RooCmdArg & | arg7 = RooCmdArg::none() , |
||
const RooCmdArg & | arg8 = RooCmdArg::none() |
||
) |
Create an object that represents the integral of the function over one or more observables listed in iset
.
The actual integration calculation is only performed when the return object is evaluated. The name of the integral object is automatically constructed from the name of the input function, the variables it integrates and the range integrates over
The following named arguments are accepted
Type of CmdArg | Effect on CDF |
---|---|
SupNormSet(const RooArgSet&) | Observables over which should be normalized in addition to the integration observables |
ScanNumCdf() | Apply scanning technique if cdf integral involves numeric integration [ default ] |
ScanAllCdf() | Always apply scanning technique |
ScanNoCdf() | Never apply scanning technique |
ScanParameters(Int_t nbins, Int_t intOrder) | Parameters for scanning technique of making CDF: number of sampled bins and order of interpolation applied on numeric cdf |
The RooAbsPdf::createCdf() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Definition at line 3367 of file RooAbsPdf.cxx.
|
virtual |
Create a \( \chi^2 \) variable from a histogram and this function.
The following named arguments are supported
Options to control construction of the \( \chi^2 \) | |
---|---|
DataError(RooAbsData::ErrorType) | Choose between Poisson errors and Sum-of-weights errors |
NumCPU(Int_t) | Activate parallel processing feature on N processes |
Range() | Calculate \( \chi^2 \) only in selected region |
IntegrateBins() | Integrate PDF within each bin. This sets the desired precision. |
data | Histogram with data |
The RooAbsReal::createChi2() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Reimplemented from RooAbsReal.
Definition at line 190 of file RooAbsReal.cxx.
|
virtual |
Create a \( \chi^2 \) from a histogram and this function.
Type of CmdArg | Effect on \( \chi^2 \) |
---|---|
Extended() | Use expected number of events of an extended p.d.f as normalization |
DataError() | Choose between:
|
NumCPU() | Activate parallel processing feature |
Range() | Fit only selected region |
SumCoefRange() | Set the range in which to interpret the coefficients of RooAddPdf components |
SplitRange() | Fit ranges used in different categories get named after the category. Using Range("range"), SplitRange() as switches, different ranges could be set like this: myVariable.setRange("range_pi0", 135, 210);
myVariable.setRange("range_gamma", 50, 210);
|
ConditionalObservables(Args_t &&... argsOrArgSet) | Define projected observables. |
The RooAbsPdf::createChi2() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Reimplemented from RooAbsReal.
Definition at line 1781 of file RooAbsPdf.cxx.
|
virtual |
Create a \( \chi^2 \) variable from a histogram and this function.
The following named arguments are supported
Options to control construction of the \( \chi^2 \) | |
---|---|
DataError(RooAbsData::ErrorType) | Choose between Poisson errors and Sum-of-weights errors |
NumCPU(Int_t) | Activate parallel processing feature on N processes |
Range() | Calculate \( \chi^2 \) only in selected region |
IntegrateBins() | Integrate PDF within each bin. This sets the desired precision. |
data | Histogram with data |
The RooAbsReal::createChi2() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
cmdList | List with RooCmdArg() from the table |
Reimplemented from RooAbsReal.
Definition at line 189 of file RooAbsReal.cxx.
|
virtual |
Create a \( \chi^2 \) from a series of x and y values stored in a dataset.
The y values can either be the event weights (default), or can be another column designated by the YVar() argument. The y value must have errors defined for the \( \chi^2 \) to be well defined.
The following named arguments are supported
Options to control construction of the \( \chi^2 \) | |
---|---|
YVar(RooRealVar& yvar) | Designate given column in dataset as Y value |
Integrate(Bool_t flag) | Integrate function over range specified by X errors rather than take value at bin center. |
Reimplemented from RooAbsReal.
Definition at line 201 of file RooAbsReal.cxx.
|
virtual |
Reimplemented from RooAbsReal.
Definition at line 200 of file RooAbsReal.cxx.
|
virtual |
Argument-list version of RooAbsPdf::createChi2()
Reimplemented from RooAbsReal.
Definition at line 1853 of file RooAbsPdf.cxx.
|
virtual |
Construct representation of -log(L) of PDF with given dataset.
If dataset is unbinned, an unbinned likelihood is constructed. If the dataset is binned, a binned likelihood is constructed.
The following named arguments are supported
Type of CmdArg | Effect on nll | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ConditionalObservables(Args_t &&... argsOrArgSet) | Do not normalize PDF over listed observables. | ||||||||||
Extended(Bool_t flag) | Add extended likelihood term, off by default | ||||||||||
Range(const char* name) | Fit only data inside range with given name | ||||||||||
Range(Double_t lo, Double_t hi) | Fit only data inside given range. A range named "fit" is created on the fly on all observables. Multiple comma separated range names can be specified. | ||||||||||
SumCoefRange(const char* name) | Set the range in which to interpret the coefficients of RooAddPdf components | ||||||||||
NumCPU(int num, int strat) | Parallelize NLL calculation on num CPUs
| ||||||||||
BatchMode(bool on) | Batch evaluation mode. See fitTo(). | ||||||||||
Optimize(Bool_t flag) | Activate constant term optimization (on by default) | ||||||||||
SplitRange(Bool_t flag) | Use separate fit ranges in a simultaneous fit. Actual range name for each subsample is assumed to be rangeName_indexState , where indexState is the state of the master index category of the simultaneous fit. Using Range("range"), SplitRange() as switches, different ranges could be set like this: myVariable.setRange("range_pi0", 135, 210);
myVariable.setRange("range_gamma", 50, 210);
| ||||||||||
Constrain(const RooArgSet&pars) | For p.d.f.s that contain internal parameter constraint terms (that is usually product PDFs, where one term of the product depends on parameters but not on the observable(s),), only apply constraints to the given subset of parameters. | ||||||||||
ExternalConstraints(const RooArgSet& ) | Include given external constraints to likelihood by multiplying them with the original likelihood. | ||||||||||
GlobalObservables(const RooArgSet&) | Define the set of normalization observables to be used for the constraint terms. If none are specified the constrained parameters are used. | ||||||||||
GlobalObservablesSource(const char* sourceName) | Which source to prioritize for global observable values. Can be either:
| ||||||||||
GlobalObservablesTag(const char* tagName) | Define the set of normalization observables to be used for the constraint terms by a string attribute associated with pdf observables that match the given tagName. | ||||||||||
Verbose(Bool_t flag) | Controls RooFit informational messages in likelihood construction | ||||||||||
CloneData(Bool flag) | Use clone of dataset in NLL (default is true) | ||||||||||
Offset(Bool_t) | Offset likelihood by initial value (so that starting value of FCN in minuit is zero). This can improve numeric stability in simultaneous fits with components with large likelihood values | ||||||||||
IntegrateBins(double precision) | In binned fits, integrate the PDF over the bins instead of using the probability density at the bin centre. This can reduce the bias observed when fitting functions with high curvature to binned data.
|
The RooAbsPdf::createNLL() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Reimplemented in RooStats::HistFactory::HistFactorySimultaneous.
Definition at line 936 of file RooAbsPdf.cxx.
|
virtual |
Construct representation of -log(L) of PDFwith given dataset.
If dataset is unbinned, an unbinned likelihood is constructed. If the dataset is binned, a binned likelihood is constructed.
See RooAbsPdf::createNLL(RooAbsData& data, RooCmdArg arg1, RooCmdArg arg2, RooCmdArg arg3, RooCmdArg arg4, RooCmdArg arg5, RooCmdArg arg6, RooCmdArg arg7, RooCmdArg arg8) for documentation of options
Reimplemented in RooStats::HistFactory::HistFactorySimultaneous.
Definition at line 1001 of file RooAbsPdf.cxx.
Return a p.d.f that represent a projection of this p.d.f integrated over given observables.
Reimplemented in RooProjectedPdf.
Definition at line 3310 of file RooAbsPdf.cxx.
RooAbsReal * RooAbsPdf::createScanCdf | ( | const RooArgSet & | iset, |
const RooArgSet & | nset, | ||
Int_t | numScanBins, | ||
Int_t | intOrder | ||
) |
Definition at line 3422 of file RooAbsPdf.cxx.
|
static |
Returns the default numeric MC generator configuration for all RooAbsReals.
Definition at line 3461 of file RooAbsPdf.cxx.
Return expected number of events to be used in calculation of extended likelihood.
This function should not be overridden, as it just redirects to the actual virtual function but takes a RooArgSet reference instead of pointer (
Definition at line 276 of file RooAbsPdf.h.
Return expected number of events to be used in calculation of extended likelihood.
Return expected number of events from this p.d.f for use in extended likelihood calculations.
This default implementation returns zero
Reimplemented in RooAddModel, RooExtendedTerm, RooExtendPdf, RooProdPdf, RooRealSumPdf, RooSimultaneous, RooAddPdf, RooBinSamplingPdf, and RooNormalizedPdf.
Definition at line 3260 of file RooAbsPdf.cxx.
double RooAbsPdf::extendedTerm | ( | double | sumEntries, |
double | expected, | ||
double | sumEntriesW2 = 0.0 |
||
) | const |
Definition at line 791 of file RooAbsPdf.cxx.
double RooAbsPdf::extendedTerm | ( | double | sumEntries, |
RooArgSet const * | nset, | ||
double | sumEntriesW2 = 0.0 |
||
) | const |
Return the extended likelihood term ( \( N_\mathrm{expect} - N_\mathrm{observed} \cdot \log(N_\mathrm{expect} \)) of this PDF for the given number of observed events.
For successful operation, the PDF implementation must indicate that it is extendable by overloading canBeExtended()
, and must implement the expectedEvents()
function.
[in] | observed | The number of observed events. |
[in] | nset | The normalization set when asking the pdf for the expected number of events. |
[in] | observedSumW2 | The number of observed events when weighting with squared weights. If non-zero, the weight-squared error correction is applied to the extended term. |
The weight-squared error correction works as follows: adjust poisson such that estimate of \(N_\mathrm{expect}\) stays at the same value, but has a different variance, rescale both the observed and expected count of the Poisson with a factor \( \sum w_{i} / \sum w_{i}^2 \) (the effective weight of the Poisson term), i.e., change \(\mathrm{Poisson}(N_\mathrm{observed} = \sum w_{i} | N_\mathrm{expect} )\) to \( \mathrm{Poisson}(\sum w_{i} \cdot \sum w_{i} / \sum w_{i}^2 | N_\mathrm{expect} \cdot \sum w_{i} / \sum w_{i}^2 ) \), weighted by the effective weight \( \sum w_{i}^2 / \sum w_{i} \) in the likelihood. Since here we compute the likelihood with the weight square, we need to multiply by the square of the effective weight:
The extended term for the likelihood weighted by the square of the weight will be then:
\( \left(\sum w_{i}^2 / \sum w_{i}\right)^2 \cdot W_\mathrm{expect} - (\sum w_{i}^2 / \sum w_{i})^2 \cdot W_\mathrm{observed} \cdot \log{W_\mathrm{expect}} \)
aund this is using the previous expressions for \( W_\mathrm{expect} \) and \( W_\mathrm{observed} \):
\( \sum w_{i}^2 / \sum w_{i} \cdot N_\mathrm{expect} - \sum w_{i}^2 \cdot \log{W_\mathrm{expect}} \)
Since the weights are constants in the likelihood we can use \(\log{N_\mathrm{expect}}\) instead of \(\log{W_\mathrm{expect}}\).
See also RooAbsPdf::extendedTerm(RooAbsData const& data, bool weightSquared), which takes a dataset to extract \(N_\mathrm{observed}\) and the normalization set.
Definition at line 786 of file RooAbsPdf.cxx.
double RooAbsPdf::extendedTerm | ( | RooAbsData const & | data, |
bool | weightSquared | ||
) | const |
Return the extended likelihood term ( \( N_\mathrm{expect} - N_\mathrm{observed} \cdot \log(N_\mathrm{expect} \)) of this PDF for the given number of observed events.
This function is a wrapper around RooAbsPdf::extendedTerm(double observed, const RooArgSet* nset), where the number of observed events and observables to be used as the normalization set for the pdf is extracted from a RooAbsData.
For successful operation, the PDF implementation must indicate that it is extendable by overloading canBeExtended()
, and must implement the expectedEvents()
function.
[in] | data | The RooAbsData to retrieve the set of observables and number of expected events. |
[in] | weightSquared | If set to true , the extended term will be scaled by the ratio of squared event weights over event weights: \( \sum w_{i}^2 / \sum w_{i} \). Indended to be used by fits with the SumW2Error() option that can be passed to RooAbsPdf::fitTo(RooAbsData&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&, const RooCmdArg&) (see the documentation of said function to learn more about the interpretation of fits with squared weights). |
Definition at line 852 of file RooAbsPdf.cxx.
|
inlinevirtual |
Returns ability of PDF to provide extended likelihood terms.
Possible answers are in the enumerator RooAbsPdf::ExtendMode. This default implementation always returns CanNotBeExtended.
Reimplemented in RooAddModel, RooExtendedTerm, RooExtendPdf, RooProdPdf, RooRealSumPdf, RooSimultaneous, RooAddPdf, RooBinSamplingPdf, and RooNormalizedPdf.
Definition at line 260 of file RooAbsPdf.h.
|
virtual |
Fit PDF to given dataset.
If dataset is unbinned, an unbinned maximum likelihood is performed. If the dataset is binned, a binned maximum likelihood is performed. By default the fit is executed through the MINUIT commands MIGRAD, HESSE in succession.
[in] | data | Data to fit the PDF to |
[in] | arg1 | One or more arguments to control the behaviour of the fit |
nullptr
otherwise. The user takes ownership of the fit result.The following named arguments are supported
Type of CmdArg | Options to control construction of -log(L) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ConditionalObservables(Args_t &&... argsOrArgSet) | Do not normalize PDF over listed observables. | ||||||||||
Extended(Bool_t flag) | Add extended likelihood term, off by default | ||||||||||
Range(const char* name) | Fit only data inside range with given name. Multiple comma-separated range names can be specified. In this case, the unnormalized PDF \(f(x)\) is normalized by the integral over all ranges \(r_i\): \[ p(x) = \frac{f(x)}{\sum_i \int_{r_i} f(x) dx}. \] | ||||||||||
Range(Double_t lo, Double_t hi) | Fit only data inside given range. A range named "fit" is created on the fly on all observables. | ||||||||||
SumCoefRange(const char* name) | Set the range in which to interpret the coefficients of RooAddPdf components | ||||||||||
NumCPU(int num, int strat) | Parallelize NLL calculation on num CPUs
| ||||||||||
SplitRange(Bool_t flag) | Use separate fit ranges in a simultaneous fit. Actual range name for each subsample is assumed to by rangeName_indexState where indexState is the state of the master index category of the simultaneous fit. Using Range("range"), SplitRange() as switches, different ranges could be set like this: myVariable.setRange("range_pi0", 135, 210);
myVariable.setRange("range_gamma", 50, 210);
| ||||||||||
Constrain(const RooArgSet&pars) | For p.d.f.s that contain internal parameter constraint terms (that is usually product PDFs, where one term of the product depends on parameters but not on the observable(s),), only apply constraints to the given subset of parameters. | ||||||||||
ExternalConstraints(const RooArgSet& ) | Include given external constraints to likelihood by multiplying them with the original likelihood. | ||||||||||
GlobalObservables(const RooArgSet&) | Define the set of normalization observables to be used for the constraint terms. If none are specified the constrained parameters are used. | ||||||||||
Offset(Bool_t) | Offset likelihood by initial value (so that starting value of FCN in minuit is zero). This can improve numeric stability in simultaneously fits with components with large likelihood values | ||||||||||
BatchMode(bool on) | Experimental batch evaluation mode. This computes a batch of likelihood values at a time, uses faster math functions and possibly auto vectorisation (this depends on the compiler flags). Depending on hardware capabilities, the compiler flags and whether a batch evaluation function was implemented for the PDFs of the model, likelihood computations are 2x to 10x faster. The relative difference of the single log-likelihoods w.r.t. the legacy mode is usually better than 1.E-12, and fit parameters usually agree to better than 1.E-6. | ||||||||||
IntegrateBins(double precision) | In binned fits, integrate the PDF over the bins instead of using the probability density at the bin centre. This can reduce the bias observed when fitting functions with high curvature to binned data.
| ||||||||||
Options to control flow of fit procedure | |||||||||||
Minimizer("<type>", "<algo>") | Choose minimization package and optionally the algorithm to use. Default is MINUIT/MIGRAD through the RooMinimizer interface, but others can be specified (through RooMinimizer interface).
| ||||||||||
InitialHesse(Bool_t flag) | Flag controls if HESSE before MIGRAD as well, off by default | ||||||||||
Optimize(Bool_t flag) | Activate constant term optimization of test statistic during minimization (on by default) | ||||||||||
Hesse(Bool_t flag) | Flag controls if HESSE is run after MIGRAD, on by default | ||||||||||
Minos(Bool_t flag) | Flag controls if MINOS is run after HESSE, off by default | ||||||||||
Minos(const RooArgSet& set) | Only run MINOS on given subset of arguments | ||||||||||
Save(Bool_t flag) | Flag controls if RooFitResult object is produced and returned, off by default | ||||||||||
Strategy(Int_t flag) | Set Minuit strategy (0 to 2, default is 1) | ||||||||||
EvalErrorWall(bool flag=true) | When parameters are in disallowed regions (e.g. PDF is negative), return very high value to fitter to force it out of that region. This can, however, mean that the fitter gets lost in this region. If this happens, try switching it off. | ||||||||||
RecoverFromUndefinedRegions(double strength) | When PDF is invalid (e.g. parameter in undefined region), try to direct minimiser away from that region. strength controls the magnitude of the penalty term. Leaving out this argument defaults to 10. Switch off with strength = 0. . | ||||||||||
FitOptions(const char* optStr) |
| ||||||||||
SumW2Error(Bool_t flag) | Apply correction to errors and covariance matrix. This uses two covariance matrices, one with the weights, the other with squared weights, to obtain the correct errors for weighted likelihood fits. If this option is activated, the corrected covariance matrix is calculated as \( V_\mathrm{corr} = V C^{-1} V \), where \( V \) is the original covariance matrix and \( C \) is the inverse of the covariance matrix calculated using the squared weights. This allows to switch between two interpretations of errors:
| ||||||||||
AsymptoticError() | Use the asymptotically correct approach to estimate errors in the presence of weights. This is slower but more accurate than SumW2Error . See also https://arxiv.org/abs/1911.01303). | ||||||||||
PrefitDataFraction(double fraction) | Runs a prefit on a small dataset of size fraction*(actual data size). This can speed up fits by finding good starting values for the parameters for the actual fit.
| ||||||||||
Options to control informational output | |||||||||||
Verbose(Bool_t flag) | Flag controls if verbose output is printed (NLL, parameter changes during fit). | ||||||||||
Timer(Bool_t flag) | Time CPU and wall clock consumption of fit steps, off by default. | ||||||||||
PrintLevel(Int_t level) | Set Minuit print level (-1 to 3, default is 1). At -1 all RooFit informational messages are suppressed as well. See RooMinimizer::PrintLevel for the meaning of the levels. | ||||||||||
Warnings(Bool_t flag) | Enable or disable MINUIT warnings (enabled by default) | ||||||||||
PrintEvalErrors(Int_t numErr) | Control number of p.d.f evaluation errors printed per likelihood evaluation. A negative value suppresses output completely, a zero value will only print the error count per p.d.f component, a positive value will print details of each error up to numErr messages per p.d.f component. |
The RooAbsPdf::fitTo() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Definition at line 1465 of file RooAbsPdf.cxx.
|
virtual |
Fit PDF to given dataset.
If dataset is unbinned, an unbinned maximum likelihood is performed. If the dataset is binned, a binned maximum likelihood is performed. By default the fit is executed through the MINUIT commands MIGRAD, HESSE and MINOS in succession.
See RooAbsPdf::fitTo(RooAbsData&,RooCmdArg&,RooCmdArg&,RooCmdArg&,RooCmdArg&,RooCmdArg&,RooCmdArg&,RooCmdArg&,RooCmdArg&)
for documentation of options
Definition at line 1601 of file RooAbsPdf.cxx.
|
virtual |
Interface function to create a generator context from a p.d.f.
This default implementation returns a 'standard' context that works for any p.d.f
Reimplemented in RooEffProd, RooAddPdf, RooAbsAnaConvPdf, RooAddModel, RooFFTConvPdf, RooNumConvPdf, RooProdPdf, and RooSimultaneous.
Definition at line 1932 of file RooAbsPdf.cxx.
RooAbsPdf::generate | ( | const RooArgSet & | whatVars, |
const RooCmdArg & | arg1 = RooCmdArg::none() , |
||
const RooCmdArg & | arg2 = RooCmdArg::none() , |
||
const RooCmdArg & | arg3 = RooCmdArg::none() , |
||
const RooCmdArg & | arg4 = RooCmdArg::none() , |
||
const RooCmdArg & | arg5 = RooCmdArg::none() , |
||
const RooCmdArg & | arg6 = RooCmdArg::none() |
||
) |
Generate a new dataset containing the specified variables with events sampled from our distribution.
Generate the specified number of events or expectedEvents() if not specified.
[in] | whatVars | Choose variables in which to generate events. Variables not listed here will remain constant and not be used for event generation. |
[in] | argxx | Optional RooCmdArg() to change behaviour of generate(). |
Any variables of this PDF that are not in whatVars will use their current values and be treated as fixed parameters. Returns zero in case of an error.
Type of CmdArg | Effect on generate |
---|---|
Name(const char* name) | Name of the output dataset |
Verbose(Bool_t flag) | Print informational messages during event generation |
NumEvent(int nevt) | Generate specified number of events |
Extended() | If no number of events to be generated is given, use expected number of events from extended likelihood term. This evidently only works for extended PDFs. |
GenBinned(const char* tag) | Use binned generation for all component pdfs that have 'setAttribute(tag)' set |
AutoBinned(Bool_t flag) | Automatically deploy binned generation for binned distributions (e.g. RooHistPdf, sums and products of RooHistPdfs etc)
|
AllBinned() | As above, but for all components.
|
ProtoData(const RooDataSet& data, Bool_t randOrder) | Use specified dataset as prototype dataset. If randOrder in ProtoData() is set to true, the order of the events in the dataset will be read in a random order if the requested number of events to be generated does not match the number of events in the prototype dataset.
|
Depending on the fit model (if it is difficult to sample), it may be necessary to change generator settings. For the default generator (RooFoamGenerator), the number of samples or cells could be increased by e.g. using myPdf->specialGeneratorConfig()->getConfigSection("RooFoamGenerator").setRealValue("nSample",1e4);
The foam generator e.g. has the following config options:
The RooAbsPdf::generate() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Definition at line 2015 of file RooAbsPdf.cxx.
RooDataSet * RooAbsPdf::generate | ( | const RooArgSet & | whatVars, |
const RooDataSet & | prototype, | ||
Int_t | nEvents = 0 , |
||
Bool_t | verbose = kFALSE , |
||
Bool_t | randProtoOrder = kFALSE , |
||
Bool_t | resampleProto = kFALSE |
||
) | const |
Generate a new dataset using a prototype dataset as a model, with values of the variables in whatVars
sampled from our distribution.
[in] | whatVars | Generate for these variables. |
[in] | prototype | Use this dataset as a prototype: the new dataset will contain the same number of events as the prototype (by default), and any prototype variables not in whatVars will be copied into the new dataset for each generated event and also used to set our PDF parameters. The user can specify a number of events to generate that will override the default. The result is a copy of the prototype dataset with only variables in whatVars randomized. Variables in whatVars that are not in the prototype will be added as new columns to the generated dataset. |
[in] | nEvents | Number of events to generate. Defaults to 0, which means number of event in prototype dataset. |
[in] | verbose | Show which generator strategies are being used. |
[in] | randProtoOrder | Randomise order of retrieval of events from proto dataset. |
[in] | resampleProto | Resample from the proto dataset. |
Definition at line 2275 of file RooAbsPdf.cxx.
RooDataSet * RooAbsPdf::generate | ( | const RooArgSet & | whatVars, |
Double_t | nEvents = 0 , |
||
Bool_t | verbose = kFALSE , |
||
Bool_t | autoBinned = kTRUE , |
||
const char * | binnedTag = "" , |
||
Bool_t | expectedData = kFALSE , |
||
Bool_t | extended = kFALSE |
||
) | const |
Generate a new dataset containing the specified variables with events sampled from our distribution.
[in] | whatVars | Generate a dataset with the variables (and categories) in this set. Any variables of this PDF that are not in whatVars will use their current values and be treated as fixed parameters. |
[in] | nEvents | Generate the specified number of events or else try to use expectedEvents() if nEvents <= 0 (default). |
[in] | verbose | Show which generator strategies are being used. |
[in] | autoBinned | If original distribution is binned, return bin centers and randomise weights instead of generating single events. |
[in] | binnedTag | |
[in] | expectedData | Call setExpectedData on the genContext. |
[in] | extended | Randomise number of events generated according to Poisson(nEvents). Only useful if PDF is extended. |
Definition at line 2190 of file RooAbsPdf.cxx.
|
inline |
[in] | nEvents | How many events to generate |
Definition at line 58 of file RooAbsPdf.h.
RooDataSet * RooAbsPdf::generate | ( | RooAbsPdf::GenSpec & | spec | ) | const |
Generate according to GenSpec obtained from prepareMultiGen().
If many identical generation requests are needed, e.g.
in toy MC studies, it is more efficient to use the prepareMultiGen()/generate() combination than calling the standard generate() multiple times as initialization overhead is only incurred once.
Definition at line 2153 of file RooAbsPdf.cxx.
|
private |
Internal method.
Definition at line 2219 of file RooAbsPdf.cxx.
|
virtual |
Generate a new dataset containing the specified variables with events sampled from our distribution.
[in] | whatVars | Choose variables in which to generate events. Variables not listed here will remain constant and not be used for event generation |
[in] | arg1 | Optional RooCmdArg to change behaviour of generateBinned() |
Generate the specified number of events or expectedEvents() if not specified.
Any variables of this PDF that are not in whatVars will use their current values and be treated as fixed parameters. Returns zero in case of an error. The caller takes ownership of the returned dataset.
The following named arguments are supported
Type of CmdArg | Effect on generation |
---|---|
Name(const char* name) | Name of the output dataset |
Verbose(Bool_t flag) | Print informational messages during event generation |
NumEvent(int nevt) | Generate specified number of events |
Extended() | The actual number of events generated will be sampled from a Poisson distribution with mu=nevt. |
This can be much faster for peaked PDFs, but the number of events is not exactly what was requested. | ExpectedData()
| Return a binned dataset without statistical fluctuations (also aliased as Asimov())
The RooAbsPdf::generateBinned() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Definition at line 2408 of file RooAbsPdf.cxx.
|
virtual |
Generate a new dataset containing the specified variables with events sampled from our distribution.
[in] | whatVars | Variables that values should be generated for. |
[in] | nEvents | How many events to generate. If nEvents <=0 , use the value returned by expectedEvents() as target. |
[in] | expectedData | If set to true (false by default), the returned histogram returns the 'expected' data sample, i.e. no statistical fluctuations are present. |
[in] | extended | For each bin, generate Poisson(x, mu) events, where mu is chosen such that on average, one would obtain nEvents events. This means that the true number of events will fluctuate around the desired value, but the generation happens a lot faster. Especially if the PDF is sharply peaked, the multinomial event generation necessary to generate exactly nEvents events can be very slow. |
The binning used for generation of events is the currently set binning for the variables. It can e.g. be changed using
Any variables of this PDF that are not in whatVars
will use their current values and be treated as fixed parameters.
nullptr
in case of an error. Definition at line 2490 of file RooAbsPdf.cxx.
|
inlinevirtual |
As RooAbsPdf::generateBinned(const RooArgSet&, const RooCmdArg&,const RooCmdArg&, const RooCmdArg&,const RooCmdArg&, const RooCmdArg&,const RooCmdArg&)
[in] | nEvents | How many events to generate |
Definition at line 107 of file RooAbsPdf.h.
Interface for generation of an event using the algorithm corresponding to the specified code.
The meaning of each code is defined by the getGenerator() implementation. The default implementation does nothing.
Reimplemented in RooBCPEffDecay, RooBCPGenDecay, RooBDecay, RooBMixDecay, RooDecay, RooGamma, RooGaussModel, RooGExpModel, RooLandau, RooLognormal, RooNonCPEigenDecay, RooUniform, RooAddModel, RooMultiVarGaussian, RooProdPdf, RooProjectedPdf, RooTruthModel, RooGaussian, RooJohnson, RooPoisson, and RooBinSamplingPdf.
Definition at line 2353 of file RooAbsPdf.cxx.
|
virtual |
Special generator interface for generation of 'global observables' – for RooStats tools.
Reimplemented in RooSimultaneous.
Definition at line 2610 of file RooAbsPdf.cxx.
|
virtual |
This helper function finds and collects all constraints terms of all component p.d.f.s and returns a RooArgSet with all those terms.
Definition at line 3439 of file RooAbsPdf.cxx.
|
inlinevirtual |
Reimplemented in RooProdPdf.
Definition at line 210 of file RooAbsPdf.h.
|
virtual |
Load generatedVars with the subset of directVars that we can generate events for, and return a code that specifies the generator algorithm we will use.
A code of zero indicates that we cannot generate any of the directVars (in this case, nothing should be added to generatedVars). Any non-zero codes will be passed to our generateEvent() implementation, but otherwise its value is arbitrary. The default implemetation of this method returns zero. Subclasses will usually implement this method using the matchArgs() methods to advertise the algorithms they provide.
Reimplemented in RooBinSamplingPdf, RooBCPEffDecay, RooBCPGenDecay, RooBDecay, RooBMixDecay, RooDecay, RooGamma, RooGaussModel, RooGExpModel, RooLandau, RooLognormal, RooNonCPEigenDecay, RooUniform, RooAddModel, RooMultiVarGaussian, RooProdPdf, RooProjectedPdf, RooTruthModel, RooGaussian, RooJohnson, and RooPoisson.
Definition at line 2331 of file RooAbsPdf.cxx.
const RooNumGenConfig * RooAbsPdf::getGeneratorConfig | ( | ) | const |
Return the numeric MC generator configuration used for this object.
If a specialized configuration was associated with this object, that configuration is returned, otherwise the default configuration for all RooAbsReals is returned
Definition at line 3499 of file RooAbsPdf.cxx.
RooSpan< const double > RooAbsPdf::getLogProbabilities | ( | RooBatchCompute::RunContext & | evalData, |
const RooArgSet * | normSet = nullptr |
||
) | const |
Compute the log-likelihoods for all events in the requested batch.
The arguments are passed over to getValues().
[in] | evalData | Struct with data that should be used for evaluation. |
[in] | normSet | Optional normalisation set to be used during computations. |
Definition at line 729 of file RooAbsPdf.cxx.
Definition at line 739 of file RooAbsPdf.cxx.
Return the log of the current value with given normalization An error message is printed if the argument of the log is negative.
Reimplemented in RooHistConstraint.
Definition at line 672 of file RooAbsPdf.cxx.
RooSpan< const double > RooAbsPdf::getLogValBatch | ( | std::size_t | begin, |
std::size_t | batchSize, | ||
const RooArgSet * | normSet = nullptr |
||
) | const |
Get normalisation term needed to normalise the raw values returned by getVal().
Note that getVal(normalisationVariables)
will automatically apply the normalisation term returned here.
nset | Set of variables to normalise over. |
Definition at line 239 of file RooAbsPdf.h.
Get normalisation term needed to normalise the raw values returned by getVal().
Note that getVal(normalisationVariables)
will automatically apply the normalisation term returned here.
nset | Set of variables to normalise over. |
Reimplemented in RooResolutionModel.
Definition at line 482 of file RooAbsPdf.cxx.
|
inline |
Definition at line 297 of file RooAbsPdf.h.
|
virtual |
Return pointer to RooAbsReal object that implements calculation of integral over observables iset in range rangeName, optionally taking the integrand normalized over observables nset.
Definition at line 506 of file RooAbsPdf.cxx.
std::vector< double > RooAbsReal::getValues | ( | RooAbsData const & | data, |
RooFit::BatchModeOption | batchMode = RooFit::BatchModeOption::Cpu |
||
) | const |
Definition at line 141 of file RooAbsReal.cxx.
|
virtual |
Compute batch of values for given input data, and normalise by integrating over the observables in normSet
.
Store result in evalData
, and return a span pointing to it. This uses evaluateSpan() to perform an (unnormalised) computation of data points. This computation is finalised by normalising the bare values, and by checking for computation errors. Derived classes should override evaluateSpan() to reach maximal performance.
[in,out] | evalData | Object holding data that should be used in computations. Results are also stored here. |
[in] | normSet | If not nullptr, normalise results by integrating over the variables in this set. The normalisation is only computed once, and applied to the full batch. |
evalData
. Reimplemented from RooAbsReal.
Definition at line 408 of file RooAbsPdf.cxx.
|
virtual |
Compute batch of values for input data stored in evalData
.
This is a faster, multi-value version of getVal(). It calls evaluateSpan() to trigger computations, and finalises those (e.g. error checking or automatic normalisation) before returning a span with the results. This span will also be stored in evalData
, so subsquent calls of getValues() will return immediately.
If evalData
is empty, a single value will be returned, which is the result of evaluating the current value of each object that's serving values to us. If evalData
contains a batch of values for one or more of the objects serving values to us, a batch of values for each entry stored in evalData
is returned. To fill a RunContext with values from a dataset, use RooAbsData::getBatches().
[in] | evalData | Object holding spans of input data. The results are also stored here. |
[in] | normSet | Use these variables for normalisation (relevant for PDFs), and pass this normalisation on to object serving values to us. |
evalData
. Reimplemented from RooAbsReal.
Definition at line 140 of file RooAbsReal.cxx.
Return current value, normalized by integrating over the observables in nset
.
If nset
is 0, the unnormalized value is returned. All elements of nset
must be lvalues.
Unnormalized values are not cached. Doing so would be complicated as _norm->getVal()
could spoil the cache and interfere with returning the cached return value. Since unnormalized calls are typically done in integration calls, there is no performance hit.
Reimplemented from RooAbsReal.
Reimplemented in RooNormalizedPdf, RooResolutionModel, RooAbsCachedPdf, and RooAddPdf.
Definition at line 356 of file RooAbsPdf.cxx.
Interface for one-time initialization to setup the generator for the specified code.
Reimplemented in RooBCPEffDecay, RooBCPGenDecay, RooBMixDecay, RooNonCPEigenDecay, RooMultiVarGaussian, RooProdPdf, RooBinSamplingPdf, and RooProjectedPdf.
Definition at line 2341 of file RooAbsPdf.cxx.
Check if given observable can be safely generated using the pdfs internal generator mechanism (if that existsP).
Observables on which a PDF depends via more than route are not safe for use with internal generators because they introduce correlations not known to the internal generator
Reimplemented in RooAbsAnaConvPdf, RooAddModel, RooProdPdf, and RooBinSamplingPdf.
Definition at line 2366 of file RooAbsPdf.cxx.
|
private |
Scan through outputs and fix+log all nans and negative values.
[in,out] | outputs | Array to be scanned & fixed. |
[in] | begin | Begin of event range. Only needed to print the correct event number where the error occurred. |
Definition at line 706 of file RooAbsPdf.cxx.
std::unique_ptr< RooFitResult > RooAbsPdf::minimizeNLL | ( | RooAbsReal & | nll, |
RooAbsData const & | data, | ||
MinimizerConfig const & | cfg | ||
) |
Minimizes a given NLL variable by finding the optimal parameters with the RooMinimzer.
The NLL variable can be created with RooAbsPdf::createNLL. If you are looking for a function that combines likelihood creation with fitting, see RooAbsPdf::fitTo.
[in] | nll | The negative log-likelihood variable to minimize. |
[in] | data | The dataset that was als used for the NLL. It's a necessary parameter because it is used in the asymptotic error correction. |
[in] | cfg | Configuration struct with all the configuration options for the RooMinimizer. These are a subset of the options that you can also pass to RooAbsPdf::fitTo via the RooFit command arguments. |
Definition at line 1488 of file RooAbsPdf.cxx.
|
inline |
If true PDF must provide extended likelihood term.
Definition at line 266 of file RooAbsPdf.h.
Definition at line 319 of file RooAbsPdf.cxx.
|
inline |
Definition at line 292 of file RooAbsPdf.h.
|
virtual |
Definition at line 3178 of file RooAbsPdf.cxx.
|
privatevirtual |
Add a text box with the current parameter values and their errors to the frame.
Observables of this PDF appearing in the 'data' dataset will be omitted.
An optional label will be inserted if passed. Multi-line labels can be generated by adding \n
to the label string. Use 'sigDigits' to modify the default number of significant digits printed. The 'xmin,xmax,ymax' values specify the initial relative position of the text box in the plot frame.
Definition at line 3199 of file RooAbsPdf.cxx.
|
virtual |
Add a box with parameter values (and errors) to the specified frame.
The following named arguments are supported.
Type of CmdArg | Effect on parameter box | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameters(const RooArgSet& param) | Only the specified subset of parameters will be shown. By default all non-constant parameters are shown. | ||||||||
ShowConstants(Bool_t flag) | Also display constant parameters | ||||||||
Format(const char* optStr) |
| ||||||||
Format(const char* what,...) | Parameter formatting options.
| ||||||||
Label(const chat* label) | Add label to parameter box. Use \n for multi-line labels. | ||||||||
Layout(Double_t xmin, Double_t xmax, Double_t ymax) | Specify relative position of left/right side of box and top of box. Coordinates are given as position on the pad between 0 and 1. The lower end of the box is calculated automatically from the number of lines in the box. |
Example use:
The RooAbsPdf::paramOn() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Definition at line 3108 of file RooAbsPdf.cxx.
|
inlinevirtual |
Helper calling plotOn(RooPlot*, RooLinkedList&) const.
The RooAbsPdf::plotOn() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Reimplemented from RooAbsReal.
Reimplemented in RooSimultaneous, and RooSimultaneous.
Definition at line 121 of file RooAbsPdf.h.
Plot oneself on 'frame'.
In addition to features detailed in RooAbsReal::plotOn(), the scale factor for a PDF can be interpreted in three different ways. The interpretation is controlled by ScaleType
Reimplemented from RooAbsReal.
Reimplemented in RooSimultaneous.
Definition at line 3042 of file RooAbsPdf.cxx.
|
virtual |
Plot (project) PDF on specified frame.
This function takes the following named arguments (for more arguments, see also RooAbsReal::plotOn(RooPlot*,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&, const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&, const RooCmdArg&) const )
Type of argument | Controlling normalisation |
---|---|
NormRange(const char* name) | Calculate curve normalization w.r.t. specified range[s]. See the tutorial rf212_plottingInRanges_blinding.C
|
Normalization(Double_t scale, ScaleType code) | Adjust normalization by given scale factor. Interpretation of number depends on code: |
Type of argument | Misc control |
Name(const chat* name) | Give curve specified name in frame. Useful if curve is to be referenced later |
Asymmetry(const RooCategory& c) | Show the asymmetry of the PDF in given two-state category \( \frac{F(+)-F(-)}{F(+)+F(-)} \) rather than the PDF projection. Category must have two states with indices -1 and +1 or three states with indeces -1,0 and +1. |
ShiftToZero(Bool_t flag) | Shift entire curve such that lowest visible point is at exactly zero. Mostly useful when plotting -log(L) or \( \chi^2 \) distributions |
AddTo(const char* name, double_t wgtSelf, double_t wgtOther) | Create a projection of this PDF onto the x-axis, but instead of plotting it directly, add it to an existing curve with given name (and relative weight factors). |
Components(const char* names) | When plotting sums of PDFs, plot only the named components (e.g. only the signal of a signal+background model). |
Components(const RooArgSet& compSet) | As above, but pass a RooArgSet of the components themselves. |
Type of argument | Projection control |
Slice(const RooArgSet& set) | Override default projection behaviour by omitting observables listed in set from the projection, i.e. by not integrating over these. Slicing is usually only sensible in discrete observables, by e.g. creating a slice of the PDF at the current value of the category observable. |
Slice(RooCategory& cat, const char* label) | Override default projection behaviour by omitting the specified category observable from the projection, i.e., by not integrating over all states of this category. The slice is positioned at the given label value. Multiple Slice() commands can be given to specify slices in multiple observables, e.g. pdf.plotOn(frame, Slice(tagCategory, "2tag"), Slice(jetCategory, "3jet"));
|
Project(const RooArgSet& set) | Override default projection behaviour by projecting over observables given in set, completely ignoring the default projection behavior. Advanced use only. |
ProjWData(const RooAbsData& d) | Override default projection technique (integration). For observables present in given dataset projection of PDF is achieved by constructing an average over all observable values in given set. Consult RooFit plotting tutorial for further explanation of meaning & use of this technique |
ProjWData(const RooArgSet& s, const RooAbsData& d) | As above but only consider subset 's' of observables in dataset 'd' for projection through data averaging |
ProjectionRange(const char* rn) | When projecting the PDF onto the plot axis, it is usually integrated over the full range of the invisible variables. The ProjectionRange overrides this. This is useful if the PDF was fitted in a limited range in y, but it is now projected onto x. If |
Type of argument | Plotting control |
LineStyle(Int_t style) | Select line style by ROOT line style code, default is solid |
LineColor(Int_t color) | Select line color by ROOT color code, default is blue |
LineWidth(Int_t width) | Select line with in pixels, default is 3 |
FillStyle(Int_t style) | Select fill style, default is not filled. If a filled style is selected, also use VLines() to add vertical downward lines at end of curve to ensure proper closure |
FillColor(Int_t color) | Select fill color by ROOT color code |
Range(const char* name) | Only draw curve in range defined by given name. Multiple comma-separated ranges can be given. An empty string "" or nullptr means to use the default range of the variable. |
Range(double lo, double hi) | Only draw curve in specified range |
VLines() | Add vertical lines to y=0 at end points of curve |
Precision(Double_t eps) | Control precision of drawn curve w.r.t to scale of plot, default is 1e-3. A higher precision will result in more and more densely spaced curve points. A negative precision value will disable adaptive point spacing and restrict sampling to the grid point of points defined by the binning of the plotted observable (recommended for expensive functions such as profile likelihoods) |
Invisible(Bool_t flag) | Add curve to frame, but do not display. Useful in combination AddTo() |
VisualizeError(const RooFitResult& fitres, Double_t Z=1, Bool_t linearMethod=kTRUE) | Visualize the uncertainty on the parameters, as given in fitres, at 'Z' sigma. The linear method is fast but may not be accurate in the presence of strong correlations (~>0.9) and at Z>2 due to linear and Gaussian approximations made. Intervals from the sampling method can be asymmetric, and may perform better in the presence of strong correlations, but may take (much) longer to calculate
|
VisualizeError(const RooFitResult& fitres, const RooArgSet& param, Double_t Z=1, Bool_t linearMethod=kTRUE) | Visualize the uncertainty on the subset of parameters 'param', as given in fitres, at 'Z' sigma |
Reimplemented from RooAbsReal.
Reimplemented in RooSimultaneous, and RooSimultaneous.
Definition at line 2748 of file RooAbsPdf.cxx.
RooAbsPdf::prepareMultiGen | ( | const RooArgSet & | whatVars, |
const RooCmdArg & | arg1 = RooCmdArg::none() , |
||
const RooCmdArg & | arg2 = RooCmdArg::none() , |
||
const RooCmdArg & | arg3 = RooCmdArg::none() , |
||
const RooCmdArg & | arg4 = RooCmdArg::none() , |
||
const RooCmdArg & | arg5 = RooCmdArg::none() , |
||
const RooCmdArg & | arg6 = RooCmdArg::none() |
||
) |
Prepare GenSpec configuration object for efficient generation of multiple datasets from identical specification.
Generate the specified number of events or expectedEvents() if not specified.
[in] | whatVars | Choose variables in which to generate events. Variables not listed here will remain constant and not be used for event generation. |
[in] | argxx | Optional RooCmdArg() to change behaviour of generate(). |
Any variables of this PDF that are not in whatVars will use their current values and be treated as fixed parameters. Returns zero in case of an error.
Type of CmdArg | Effect on generate |
---|---|
Name(const char* name) | Name of the output dataset |
Verbose(Bool_t flag) | Print informational messages during event generation |
NumEvent(int nevt) | Generate specified number of events |
Extended() | If no number of events to be generated is given, use expected number of events from extended likelihood term. This evidently only works for extended PDFs. |
GenBinned(const char* tag) | Use binned generation for all component pdfs that have 'setAttribute(tag)' set |
AutoBinned(Bool_t flag) | Automatically deploy binned generation for binned distributions (e.g. RooHistPdf, sums and products of RooHistPdfs etc)
|
AllBinned() | As above, but for all components.
|
ProtoData(const RooDataSet& data, Bool_t randOrder) | Use specified dataset as prototype dataset. If randOrder in ProtoData() is set to true, the order of the events in the dataset will be read in a random order if the requested number of events to be generated does not match the number of events in the prototype dataset.
|
Depending on the fit model (if it is difficult to sample), it may be necessary to change generator settings. For the default generator (RooFoamGenerator), the number of samples or cells could be increased by e.g. using myPdf->specialGeneratorConfig()->getConfigSection("RooFoamGenerator").setRealValue("nSample",1e4);
The foam generator e.g. has the following config options:
The RooAbsPdf::generate() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
The RooAbsPdf::prepareMultiGen() function is pythonized with the command argument pythonization. The keywords must correspond to the CmdArgs of the function.
Definition at line 2104 of file RooAbsPdf.cxx.
|
virtual |
Print multi line detailed information of this RooAbsPdf.
Reimplemented from RooAbsReal.
Reimplemented in RooGenericPdf, RooResolutionModel, and RooAbsAnaConvPdf.
Definition at line 1905 of file RooAbsPdf.cxx.
|
virtual |
Print value of p.d.f, also print normalization integral that was last used, if any.
Reimplemented from RooAbsReal.
Definition at line 1886 of file RooAbsPdf.cxx.
|
protected |
Return lookup table with randomized order for nProto prototype events.
Definition at line 2294 of file RooAbsPdf.cxx.
|
inlineprotectedvirtual |
Function that is called at the end of redirectServers().
Can be overloaded to inject some class-dependent behavior after server redirection, e.g. resetting of caches. The return value is meant to be an error flag, so in case something goes wrong the function should return true
.
[in] | newServerList | One of the original parameters passed to redirectServers(). |
[in] | mustReplaceAll | One of the original parameters passed to redirectServers(). |
[in] | nameChange | One of the original parameters passed to redirectServers(). |
[in] | isRecursiveStep | One of the original parameters passed to redirectServers(). |
Reimplemented from RooAbsArg.
Reimplemented in RooAddPdf, RooProdPdf, RooFFTConvPdf, RooGenericPdf, RooResolutionModel, and RooProjectedPdf.
Definition at line 367 of file RooAbsPdf.h.
Reset error counter to given value, limiting the number of future error messages for this pdf to 'resetValue'.
Reimplemented in RooAddModel, and RooAddPdf.
Definition at line 634 of file RooAbsPdf.cxx.
|
inlinevirtual |
Shows if a PDF is self-normalized, which means that no attempt is made to add a normalization term.
Always returns false, unless a PDF overrides this function.
Reimplemented in RooIntegralMorph, RooMomentMorph, RooMomentMorphND, RooAbsCachedPdf, RooAddModel, RooExtendPdf, RooHistPdf, RooProdPdf, RooProjectedPdf, RooRealSumPdf, RooResolutionModel, RooSimultaneous, RooAddPdf, RooBinSamplingPdf, and RooNormalizedPdf.
Definition at line 251 of file RooAbsPdf.h.
void RooAbsPdf::setGeneratorConfig | ( | ) |
Remove the specialized numeric MC generator configuration associated with this object.
Definition at line 3526 of file RooAbsPdf.cxx.
void RooAbsPdf::setGeneratorConfig | ( | const RooNumGenConfig & | config | ) |
Set the given configuration as default numeric MC generator configuration for this object.
Definition at line 3512 of file RooAbsPdf.cxx.
void RooAbsPdf::setNormRange | ( | const char * | rangeName | ) |
Definition at line 3557 of file RooAbsPdf.cxx.
void RooAbsPdf::setNormRangeOverride | ( | const char * | rangeName | ) |
Definition at line 3574 of file RooAbsPdf.cxx.
Reset trace counter to given value, limiting the number of future trace messages for this pdf to 'value'.
Definition at line 646 of file RooAbsPdf.cxx.
RooNumGenConfig * RooAbsPdf::specialGeneratorConfig | ( | ) | const |
Returns the specialized integrator configuration for this RooAbsReal.
If this object has no specialized configuration, a null pointer is returned
Definition at line 3471 of file RooAbsPdf.cxx.
RooNumGenConfig * RooAbsPdf::specialGeneratorConfig | ( | Bool_t | createOnTheFly | ) |
Returns the specialized integrator configuration for this RooAbsReal.
If this object has no specialized configuration, a null pointer is returned, unless createOnTheFly is kTRUE in which case a clone of the default integrator configuration is created, installed as specialized configuration, and returned
Definition at line 3484 of file RooAbsPdf.cxx.
|
protectedvirtual |
Verify that the normalization integral cached with this PDF is valid for given set of normalization observables.
If not, the cached normalization integral (if any) is deleted and a new integral is constructed for use with 'nset'. Elements in 'nset' can be discrete and real, but must be lvalues.
For functions that declare to be self-normalized by overloading the selfNormalized() function, a unit normalization is always constructed.
Definition at line 541 of file RooAbsPdf.cxx.
Check that passed value is positive and not 'not-a-number'.
If not, print an error, until the error counter reaches its set maximum.
Definition at line 447 of file RooAbsPdf.cxx.
|
static |
Return global level of verbosity for p.d.f. evaluations.
Definition at line 3280 of file RooAbsPdf.cxx.
Change global level of verbosity for p.d.f. evaluations.
Definition at line 3270 of file RooAbsPdf.cxx.
|
friend |
The cache manager.
Definition at line 365 of file RooAbsPdf.h.
|
friend |
Definition at line 351 of file RooAbsPdf.h.
|
friend |
Definition at line 330 of file RooAbsPdf.h.
|
friend |
Definition at line 336 of file RooAbsPdf.h.
|
friend |
Definition at line 334 of file RooAbsPdf.h.
|
friend |
Definition at line 329 of file RooAbsPdf.h.
|
friend |
Definition at line 342 of file RooAbsPdf.h.
|
friend |
Definition at line 338 of file RooAbsPdf.h.
|
friend |
Definition at line 331 of file RooAbsPdf.h.
|
friend |
Definition at line 337 of file RooAbsPdf.h.
|
friend |
Definition at line 346 of file RooAbsPdf.h.
|
friend |
Definition at line 332 of file RooAbsPdf.h.
|
friend |
Definition at line 333 of file RooAbsPdf.h.
|
friend |
Definition at line 335 of file RooAbsPdf.h.
|
mutableprotected |
Definition at line 383 of file RooAbsPdf.h.
|
mutableprotected |
Definition at line 385 of file RooAbsPdf.h.
|
mutableprotected |
Definition at line 353 of file RooAbsPdf.h.
|
mutableprotected |
Definition at line 363 of file RooAbsPdf.h.
|
protected |
MC generator configuration specific for this object.
Definition at line 391 of file RooAbsPdf.h.
|
staticprotected |
Definition at line 392 of file RooAbsPdf.h.
|
mutableprotected |
Normalization integral (owned by _normMgr)
Definition at line 354 of file RooAbsPdf.h.
|
mutableprotected |
Definition at line 352 of file RooAbsPdf.h.
|
protected |
Definition at line 387 of file RooAbsPdf.h.
|
protected |
Definition at line 389 of file RooAbsPdf.h.
|
mutableprotected |
Definition at line 384 of file RooAbsPdf.h.
|
staticprotected |
Definition at line 347 of file RooAbsPdf.h.