12#ifndef ROOT_TLorentzVector
13#define ROOT_TLorentzVector
407 return (
Vect() ==
q.Vect() &&
T() ==
q.T());
411 return (
Vect() !=
q.Vect() ||
T() !=
q.T());
438 return pt2 == 0 ? 0 :
E()*
E() * pt2/(pt2+
Z()*
Z());
443 return E() < 0.0 ? -sqrt(etet) : sqrt(etet);
449 return pt2 == 0 ? 0 :
E()*
E() * pt2/(pt2+pv*pv);
454 return E() < 0.0 ? -sqrt(etet) : sqrt(etet);
507 return E()*
E() -
Z()*
Z();
525 SetXYZM(spatial.
X(), spatial.
Y(), spatial.
Z(), magnitude);
533 return T()*
q.T() -
Z()*
q.Z() -
Y()*
q.Y() -
X()*
q.X();
609 : fP(
x,
y,z), fE(t) {}
612 : fP(x0), fE(x0[3]) {}
615 : fP(x0), fE(x0[3]) {}
621 , fP(p.Vect()), fE(p.T()) {}
638 Error(
"operator()()",
"bad index (%d) returning 0",i);
656 Error(
"operator()()",
"bad index (%d) returning &fE",i);
#define ClassDef(name, id)
TLorentzVector operator*(Double_t a, const TLorentzVector &)
The TLorentzRotation class describes Lorentz transformations including Lorentz boosts and rotations (...
void RotateZ(Double_t angle)
void Rotate(Double_t, const TVector3 &)
Bool_t operator!=(const TLorentzVector &) const
Double_t Rapidity() const
TLorentzVector & operator+=(const TLorentzVector &)
TLorentzVector operator+(const TLorentzVector &) const
TLorentzVector & operator=(const TLorentzVector &)
void RotateX(Double_t angle)
TLorentzVector & operator*=(Double_t a)
Bool_t operator==(const TLorentzVector &) const
Double_t Angle(const TVector3 &v) const
void GetXYZT(Double_t *carray) const
Double_t CosTheta() const
Double_t operator[](int i) const
void SetXYZT(Double_t x, Double_t y, Double_t z, Double_t t)
void RotateUz(const TVector3 &newUzVector)
Double_t Dot(const TLorentzVector &) const
TLorentzVector operator*(Double_t a) const
void SetPtEtaPhiE(Double_t pt, Double_t eta, Double_t phi, Double_t e)
Double_t DrRapidityPhi(const TLorentzVector &) const
void SetPtEtaPhiM(Double_t pt, Double_t eta, Double_t phi, Double_t m)
void SetPhi(Double_t phi)
void RotateY(Double_t angle)
void Boost(Double_t, Double_t, Double_t)
TLorentzVector operator-() const
void SetRho(Double_t rho)
TLorentzVector & Transform(const TRotation &)
virtual void Print(Option_t *option="") const
Print the TLorentz vector components as (x,y,z,t) and (P,eta,phi,E) representations.
void SetVectMag(const TVector3 &spatial, Double_t magnitude)
virtual ~TLorentzVector()
Double_t PseudoRapidity() const
void SetPxPyPzE(Double_t px, Double_t py, Double_t pz, Double_t e)
void SetTheta(Double_t theta)
Double_t operator()(int i) const
Double_t DeltaPhi(const TLorentzVector &) const
void SetVect(const TVector3 &vect3)
void SetVectM(const TVector3 &spatial, Double_t mass)
void SetXYZM(Double_t x, Double_t y, Double_t z, Double_t m)
Double_t DeltaR(const TLorentzVector &, Bool_t useRapidity=kFALSE) const
TVector3 BoostVector() const
Double_t DrEtaPhi(const TLorentzVector &) const
TLorentzVector & operator-=(const TLorentzVector &)
Mother of all ROOT objects.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
The TRotation class describes a rotation of objects of the TVector3 class.
TVector2 is a general two vector class, which can be used for the description of different vectors in...
static Double_t Phi_mpi_pi(Double_t x)
Returns phi angle in the interval [-PI,PI)
void SetXYZ(Double_t x, Double_t y, Double_t z)
void SetPhi(Double_t)
Set phi keeping mag and theta constant (BaBar).
Double_t Phi() const
Return the azimuth angle. Returns phi from -pi to pi.
Double_t Dot(const TVector3 &) const
void RotateZ(Double_t)
Rotate vector around Z.
void RotateX(Double_t)
Rotate vector around X.
Double_t Angle(const TVector3 &) const
Return the angle w.r.t. another 3-vector.
Double_t PseudoRapidity() const
Double_t m = Mag(); return 0.5*log( (m+fZ)/(m-fZ) ); guard against Pt=0.
void Rotate(Double_t, const TVector3 &)
Rotate vector.
void GetXYZ(Double_t *carray) const
Double_t CosTheta() const
Double_t Theta() const
Return the polar angle.
Double_t Perp() const
Return the transverse component (R in cylindrical coordinate system)
TVector3 & Transform(const TRotation &)
Transform this vector with a TRotation.
void RotateY(Double_t)
Rotate vector around Y.
void RotateUz(const TVector3 &)
NewUzVector must be normalized !
void SetTheta(Double_t)
Set theta keeping mag and phi constant (BaBar).
Short_t Max(Short_t a, Short_t b)
Double_t Sqrt(Double_t x)