Logo ROOT  
Reference Guide
TLorentzVector.h
Go to the documentation of this file.
1// @(#)root/physics:$Id$
2// Author: Pasha Murat , Peter Malzacher 12/02/99
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12#ifndef ROOT_TLorentzVector
13#define ROOT_TLorentzVector
14
15
16//////////////////////////////////////////////////////////////////////////
17// //
18// TLorentzVector //
19// //
20// Place holder for real lorentz vector class. //
21// //
22//////////////////////////////////////////////////////////////////////////
23
24#include "TMath.h"
25#include "TVector3.h"
26#include "TRotation.h"
27
28
30
31
32class TLorentzVector : public TObject {
33
34private:
35
36 TVector3 fP; // 3 vector component
37 Double_t fE; // time or energy of (x,y,z,t) or (px,py,pz,e)
38
39public:
40
41 typedef Double_t Scalar; // to be able to use it with the ROOT::Math::VectorUtil functions
42
43 enum { kX=0, kY=1, kZ=2, kT=3, kNUM_COORDINATES=4, kSIZE=kNUM_COORDINATES };
44 // Safe indexing of the coordinates when using with matrices, arrays, etc.
45
47
49 // Constructor giving the components x, y, z, t.
50
51 TLorentzVector(const Double_t * carray);
52 TLorentzVector(const Float_t * carray);
53 // Constructor from an array, not checked!
54
55 TLorentzVector(const TVector3 & vector3, Double_t t);
56 // Constructor giving a 3-Vector and a time component.
57
58 TLorentzVector(const TLorentzVector & lorentzvector);
59 // Copy constructor.
60
61 virtual ~TLorentzVector(){};
62 // Destructor
63
64 // inline operator TVector3 () const;
65 // inline operator TVector3 & ();
66 // Conversion (cast) to TVector3.
67
68 inline Double_t X() const;
69 inline Double_t Y() const;
70 inline Double_t Z() const;
71 inline Double_t T() const;
72 // Get position and time.
73
74 inline void SetX(Double_t a);
75 inline void SetY(Double_t a);
76 inline void SetZ(Double_t a);
77 inline void SetT(Double_t a);
78 // Set position and time.
79
80 inline Double_t Px() const;
81 inline Double_t Py() const;
82 inline Double_t Pz() const;
83 inline Double_t P() const;
84 inline Double_t E() const;
85 inline Double_t Energy() const;
86 // Get momentum and energy.
87
88 inline void SetPx(Double_t a);
89 inline void SetPy(Double_t a);
90 inline void SetPz(Double_t a);
91 inline void SetE(Double_t a);
92 // Set momentum and energy.
93
94 inline TVector3 Vect() const ;
95 // Get spatial component.
96
97 inline void SetVect(const TVector3 & vect3);
98 // Set spatial component.
99
100 inline Double_t Theta() const;
101 inline Double_t CosTheta() const;
102 inline Double_t Phi() const; //returns phi from -pi to pi
103 inline Double_t Rho() const;
104 // Get spatial vector components in spherical coordinate system.
105
106 inline void SetTheta(Double_t theta);
107 inline void SetPhi(Double_t phi);
108 inline void SetRho(Double_t rho);
109 // Set spatial vector components in spherical coordinate system.
110
111 inline void SetPxPyPzE(Double_t px, Double_t py, Double_t pz, Double_t e);
112 inline void SetXYZT(Double_t x, Double_t y, Double_t z, Double_t t);
113 inline void SetXYZM(Double_t x, Double_t y, Double_t z, Double_t m);
114 inline void SetPtEtaPhiM(Double_t pt, Double_t eta, Double_t phi, Double_t m);
115 inline void SetPtEtaPhiE(Double_t pt, Double_t eta, Double_t phi, Double_t e);
116 // Setters to provide the functionality (but a more meanigful name) of
117 // the previous version eg SetV4... PsetV4...
118
119 inline void GetXYZT(Double_t *carray) const;
120 inline void GetXYZT(Float_t *carray) const;
121 // Getters into an arry
122 // no checking!
123
124 Double_t operator () (int i) const;
125 inline Double_t operator [] (int i) const;
126 // Get components by index.
127
128 Double_t & operator () (int i);
129 inline Double_t & operator [] (int i);
130 // Set components by index.
131
132 inline TLorentzVector & operator = (const TLorentzVector &);
133 // Assignment.
134
135 inline TLorentzVector operator + (const TLorentzVector &) const;
137 // Additions.
138
139 inline TLorentzVector operator - (const TLorentzVector &) const;
141 // Subtractions.
142
143 inline TLorentzVector operator - () const;
144 // Unary minus.
145
146 inline TLorentzVector operator * (Double_t a) const;
148 // Scaling with real numbers.
149
150 inline Bool_t operator == (const TLorentzVector &) const;
151 inline Bool_t operator != (const TLorentzVector &) const;
152 // Comparisons.
153
154 inline Double_t Perp2() const;
155 // Transverse component of the spatial vector squared.
156
157 inline Double_t Pt() const;
158 inline Double_t Perp() const;
159 // Transverse component of the spatial vector (R in cylindrical system).
160
161 inline void SetPerp(Double_t);
162 // Set the transverse component of the spatial vector.
163
164 inline Double_t Perp2(const TVector3 & v) const;
165 // Transverse component of the spatial vector w.r.t. given axis squared.
166
167 inline Double_t Pt(const TVector3 & v) const;
168 inline Double_t Perp(const TVector3 & v) const;
169 // Transverse component of the spatial vector w.r.t. given axis.
170
171 inline Double_t Et2() const;
172 // Transverse energy squared.
173
174 inline Double_t Et() const;
175 // Transverse energy.
176
177 inline Double_t Et2(const TVector3 &) const;
178 // Transverse energy w.r.t. given axis squared.
179
180 inline Double_t Et(const TVector3 &) const;
181 // Transverse energy w.r.t. given axis.
182
183 inline Double_t DeltaPhi(const TLorentzVector &) const;
184 inline Double_t DeltaR(const TLorentzVector &, Bool_t useRapidity=kFALSE) const;
185 inline Double_t DrEtaPhi(const TLorentzVector &) const;
186 inline Double_t DrRapidityPhi(const TLorentzVector &) const;
187 inline TVector2 EtaPhiVector();
188
189 inline Double_t Angle(const TVector3 & v) const;
190 // Angle wrt. another vector.
191
192 inline Double_t Mag2() const;
193 inline Double_t M2() const;
194 // Invariant mass squared.
195
196 inline Double_t Mag() const;
197 inline Double_t M() const;
198 // Invariant mass. If mag2() is negative then -sqrt(-mag2()) is returned.
199
200 inline Double_t Mt2() const;
201 // Transverse mass squared.
202
203 inline Double_t Mt() const;
204 // Transverse mass.
205
206 inline Double_t Beta() const;
207 inline Double_t Gamma() const;
208
209 inline Double_t Dot(const TLorentzVector &) const;
210 inline Double_t operator * (const TLorentzVector &) const;
211 // Scalar product.
212
213 inline void SetVectMag(const TVector3 & spatial, Double_t magnitude);
214 inline void SetVectM(const TVector3 & spatial, Double_t mass);
215 // Copy spatial coordinates, and set energy = sqrt(mass^2 + spatial^2)
216
217 inline Double_t Plus() const;
218 inline Double_t Minus() const;
219 // Returns t +/- z.
220 // Related to the positive/negative light-cone component,
221 // which some define this way and others define as (t +/- z)/sqrt(2)
222
223 inline TVector3 BoostVector() const ;
224 // Returns the spatial components divided by the time component.
225
227 inline void Boost(const TVector3 &);
228 // Lorentz boost.
229
230 Double_t Rapidity() const;
231 // Returns the rapidity, i.e. 0.5*ln((E+pz)/(E-pz))
232
233 inline Double_t Eta() const;
234 inline Double_t PseudoRapidity() const;
235 // Returns the pseudo-rapidity, i.e. -ln(tan(theta/2))
236
237 inline void RotateX(Double_t angle);
238 // Rotate the spatial component around the x-axis.
239
240 inline void RotateY(Double_t angle);
241 // Rotate the spatial component around the y-axis.
242
243 inline void RotateZ(Double_t angle);
244 // Rotate the spatial component around the z-axis.
245
246 inline void RotateUz(const TVector3 & newUzVector);
247 // Rotates the reference frame from Uz to newUz (unit vector).
248
249 inline void Rotate(Double_t, const TVector3 &);
250 // Rotate the spatial component around specified axis.
251
252 inline TLorentzVector & operator *= (const TRotation &);
253 inline TLorentzVector & Transform(const TRotation &);
254 // Transformation with HepRotation.
255
258 // Transformation with HepLorenzRotation.
259
260 virtual void Print(Option_t *option="") const;
261
262 ClassDef(TLorentzVector,4) // A four vector with (-,-,-,+) metric
263};
264
265
266//inline TLorentzVector operator * (const TLorentzVector &, Double_t a);
267// moved to TLorentzVector::operator * (Double_t a)
269// Scaling LorentzVector with a real number
270
271
272inline Double_t TLorentzVector::X() const { return fP.X(); }
273inline Double_t TLorentzVector::Y() const { return fP.Y(); }
274inline Double_t TLorentzVector::Z() const { return fP.Z(); }
275inline Double_t TLorentzVector::T() const { return fE; }
276
280inline void TLorentzVector::SetT(Double_t a) { fE = a; }
281
282inline Double_t TLorentzVector::Px() const { return X(); }
283inline Double_t TLorentzVector::Py() const { return Y(); }
284inline Double_t TLorentzVector::Pz() const { return Z(); }
285inline Double_t TLorentzVector::P() const { return fP.Mag(); }
286inline Double_t TLorentzVector::E() const { return T(); }
287inline Double_t TLorentzVector::Energy() const { return T(); }
288
293
294inline TVector3 TLorentzVector::Vect() const { return fP; }
295
296inline void TLorentzVector::SetVect(const TVector3 &p) { fP = p; }
297
299 return fP.Phi();
300}
301
303 return fP.Theta();
304}
305
307 return fP.CosTheta();
308}
309
310
312 return fP.Mag();
313}
314
316 fP.SetTheta(th);
317}
318
320 fP.SetPhi(phi);
321}
322
324 fP.SetMag(rho);
325}
326
328 fP.SetXYZ(x, y, z);
329 SetT(t);
330}
331
333 SetXYZT(px, py, pz, e);
334}
335
337 if ( m >= 0 )
338 SetXYZT( x, y, z, TMath::Sqrt(x*x+y*y+z*z+m*m) );
339 else
340 SetXYZT( x, y, z, TMath::Sqrt( TMath::Max((x*x+y*y+z*z-m*m), 0. ) ) );
341}
342
344 pt = TMath::Abs(pt);
345 SetXYZM(pt*TMath::Cos(phi), pt*TMath::Sin(phi), pt*sinh(eta) ,m);
346}
347
349 pt = TMath::Abs(pt);
350 SetXYZT(pt*TMath::Cos(phi), pt*TMath::Sin(phi), pt*sinh(eta) ,e);
351}
352
353inline void TLorentzVector::GetXYZT(Double_t *carray) const {
354 fP.GetXYZ(carray);
355 carray[3] = fE;
356}
357
358inline void TLorentzVector::GetXYZT(Float_t *carray) const{
359 fP.GetXYZ(carray);
360 carray[3] = fE;
361}
362
363inline Double_t & TLorentzVector::operator [] (int i) { return (*this)(i); }
364inline Double_t TLorentzVector::operator [] (int i) const { return (*this)(i); }
365
367 fP = q.Vect();
368 fE = q.T();
369 return *this;
370}
371
373 return TLorentzVector(fP+q.Vect(), fE+q.T());
374}
375
377 fP += q.Vect();
378 fE += q.T();
379 return *this;
380}
381
383 return TLorentzVector(fP-q.Vect(), fE-q.T());
384}
385
387 fP -= q.Vect();
388 fE -= q.T();
389 return *this;
390}
391
393 return TLorentzVector(-X(), -Y(), -Z(), -T());
394}
395
397 fP *= a;
398 fE *= a;
399 return *this;
400}
401
403 return TLorentzVector(a*X(), a*Y(), a*Z(), a*T());
404}
405
407 return (Vect() == q.Vect() && T() == q.T());
408}
409
411 return (Vect() != q.Vect() || T() != q.T());
412}
413
414inline Double_t TLorentzVector::Perp2() const { return fP.Perp2(); }
415
416inline Double_t TLorentzVector::Perp() const { return fP.Perp(); }
417
418inline Double_t TLorentzVector::Pt() const { return Perp(); }
419
421 fP.SetPerp(r);
422}
423
425 return fP.Perp2(v);
426}
427
429 return fP.Perp(v);
430}
431
432inline Double_t TLorentzVector::Pt(const TVector3 &v) const {
433 return Perp(v);
434}
435
437 Double_t pt2 = fP.Perp2();
438 return pt2 == 0 ? 0 : E()*E() * pt2/(pt2+Z()*Z());
439}
440
442 Double_t etet = Et2();
443 return E() < 0.0 ? -sqrt(etet) : sqrt(etet);
444}
445
446inline Double_t TLorentzVector::Et2(const TVector3 & v) const {
447 Double_t pt2 = fP.Perp2(v);
448 Double_t pv = fP.Dot(v.Unit());
449 return pt2 == 0 ? 0 : E()*E() * pt2/(pt2+pv*pv);
450}
451
452inline Double_t TLorentzVector::Et(const TVector3 & v) const {
453 Double_t etet = Et2(v);
454 return E() < 0.0 ? -sqrt(etet) : sqrt(etet);
455}
456
458 return TVector2::Phi_mpi_pi(Phi()-v.Phi());
459}
460
462 return PseudoRapidity();
463}
464
465inline Double_t TLorentzVector::DeltaR(const TLorentzVector & v, const Bool_t useRapidity) const {
466 if(useRapidity){
467 Double_t drap = Rapidity()-v.Rapidity();
468 Double_t dphi = TVector2::Phi_mpi_pi(Phi()-v.Phi());
469 return TMath::Sqrt( drap*drap+dphi*dphi );
470 } else {
471 Double_t deta = Eta()-v.Eta();
472 Double_t dphi = TVector2::Phi_mpi_pi(Phi()-v.Phi());
473 return TMath::Sqrt( deta*deta+dphi*dphi );
474 }
475}
476
478 return DeltaR(v);
479}
480
482 return DeltaR(v, kTRUE);
483}
484
486 return TVector2 (Eta(),Phi());
487}
488
489
491 return fP.Angle(v);
492}
493
495 return T()*T() - fP.Mag2();
496}
497
499 Double_t mm = Mag2();
500 return mm < 0.0 ? -TMath::Sqrt(-mm) : TMath::Sqrt(mm);
501}
502
503inline Double_t TLorentzVector::M2() const { return Mag2(); }
504inline Double_t TLorentzVector::M() const { return Mag(); }
505
507 return E()*E() - Z()*Z();
508}
509
511 Double_t mm = Mt2();
512 return mm < 0.0 ? -TMath::Sqrt(-mm) : TMath::Sqrt(mm);
513}
514
516 return fP.Mag() / fE;
517}
518
520 Double_t b = Beta();
521 return 1.0/TMath::Sqrt(1- b*b);
522}
523
524inline void TLorentzVector::SetVectMag(const TVector3 & spatial, Double_t magnitude) {
525 SetXYZM(spatial.X(), spatial.Y(), spatial.Z(), magnitude);
526}
527
528inline void TLorentzVector::SetVectM(const TVector3 & spatial, Double_t mass) {
529 SetVectMag(spatial, mass);
530}
531
533 return T()*q.T() - Z()*q.Z() - Y()*q.Y() - X()*q.X();
534}
535
537 return Dot(q);
538}
539
540//Member functions Plus() and Minus() return the positive and negative
541//light-cone components:
542//
543// Double_t pcone = v.Plus();
544// Double_t mcone = v.Minus();
545//
546//CAVEAT: The values returned are T{+,-}Z. It is known that some authors
547//find it easier to define these components as (T{+,-}Z)/sqrt(2). Thus
548//check what definition is used in the physics you're working in and adapt
549//your code accordingly.
550
552 return T() + Z();
553}
554
556 return T() - Z();
557}
558
560 return TVector3(X()/T(), Y()/T(), Z()/T());
561}
562
563inline void TLorentzVector::Boost(const TVector3 & b) {
564 Boost(b.X(), b.Y(), b.Z());
565}
566
568 return fP.PseudoRapidity();
569}
570
572 fP.RotateX(angle);
573}
574
576 fP.RotateY(angle);
577}
578
580 fP.RotateZ(angle);
581}
582
583inline void TLorentzVector::RotateUz(const TVector3 &newUzVector) {
584 fP.RotateUz(newUzVector);
585}
586
588 fP.Rotate(a,v);
589}
590
592 fP *= m;
593 return *this;
594}
595
597 fP.Transform(m);
598 return *this;
599}
600
602 return TLorentzVector(a*p.X(), a*p.Y(), a*p.Z(), a*p.T());
603}
604
606 : fP(), fE(0.0) {}
607
609 : fP(x,y,z), fE(t) {}
610
612 : fP(x0), fE(x0[3]) {}
613
615 : fP(x0), fE(x0[3]) {}
616
618 : fP(p), fE(e) {}
619
621 , fP(p.Vect()), fE(p.T()) {}
622
623
624
626{
627 //dereferencing operator const
628 switch(i) {
629 case kX:
630 return fP.X();
631 case kY:
632 return fP.Y();
633 case kZ:
634 return fP.Z();
635 case kT:
636 return fE;
637 default:
638 Error("operator()()", "bad index (%d) returning 0",i);
639 }
640 return 0.;
641}
642
644{
645 //dereferencing operator
646 switch(i) {
647 case kX:
648 return fP.fX;
649 case kY:
650 return fP.fY;
651 case kZ:
652 return fP.fZ;
653 case kT:
654 return fE;
655 default:
656 Error("operator()()", "bad index (%d) returning &fE",i);
657 }
658 return fE;
659}
660
661#endif
ROOT::R::TRInterface & r
Definition: Object.C:4
#define b(i)
Definition: RSha256.hxx:100
#define e(i)
Definition: RSha256.hxx:103
const Bool_t kFALSE
Definition: RtypesCore.h:101
bool Bool_t
Definition: RtypesCore.h:63
double Double_t
Definition: RtypesCore.h:59
float Float_t
Definition: RtypesCore.h:57
const Bool_t kTRUE
Definition: RtypesCore.h:100
const char Option_t
Definition: RtypesCore.h:66
#define ClassDef(name, id)
Definition: Rtypes.h:325
float * q
Definition: THbookFile.cxx:89
TLorentzVector operator*(Double_t a, const TLorentzVector &)
double sinh(double)
double sqrt(double)
The TLorentzRotation class describes Lorentz transformations including Lorentz boosts and rotations (...
Double_t Energy() const
Double_t Minus() const
void RotateZ(Double_t angle)
void Rotate(Double_t, const TVector3 &)
Bool_t operator!=(const TLorentzVector &) const
Double_t Rapidity() const
TLorentzVector & operator+=(const TLorentzVector &)
TLorentzVector operator+(const TLorentzVector &) const
TLorentzVector & operator=(const TLorentzVector &)
void RotateX(Double_t angle)
void SetPy(Double_t a)
TLorentzVector & operator*=(Double_t a)
Bool_t operator==(const TLorentzVector &) const
Double_t Angle(const TVector3 &v) const
void GetXYZT(Double_t *carray) const
Double_t Rho() const
Double_t CosTheta() const
Double_t operator[](int i) const
void SetXYZT(Double_t x, Double_t y, Double_t z, Double_t t)
Double_t Plus() const
void SetY(Double_t a)
void RotateUz(const TVector3 &newUzVector)
void SetPerp(Double_t)
Double_t Beta() const
Double_t Y() const
TVector3 Vect() const
void SetT(Double_t a)
Double_t Px() const
Double_t Mag() const
Double_t Dot(const TLorentzVector &) const
Double_t M() const
Double_t M2() const
Double_t Pt() const
Double_t Perp2() const
TLorentzVector operator*(Double_t a) const
void SetPtEtaPhiE(Double_t pt, Double_t eta, Double_t phi, Double_t e)
void SetE(Double_t a)
Double_t Pz() const
Double_t X() const
Double_t DrRapidityPhi(const TLorentzVector &) const
Double_t Mt2() const
Double_t Py() const
void SetPtEtaPhiM(Double_t pt, Double_t eta, Double_t phi, Double_t m)
void SetPhi(Double_t phi)
void RotateY(Double_t angle)
void Boost(Double_t, Double_t, Double_t)
Double_t Eta() const
void SetPz(Double_t a)
TLorentzVector operator-() const
Double_t P() const
TVector2 EtaPhiVector()
void SetRho(Double_t rho)
TLorentzVector & Transform(const TRotation &)
virtual void Print(Option_t *option="") const
Print the TLorentz vector components as (x,y,z,t) and (P,eta,phi,E) representations.
void SetVectMag(const TVector3 &spatial, Double_t magnitude)
virtual ~TLorentzVector()
Double_t Et2() const
Double_t PseudoRapidity() const
Double_t Theta() const
void SetPx(Double_t a)
void SetPxPyPzE(Double_t px, Double_t py, Double_t pz, Double_t e)
Double_t Mag2() const
Double_t Et() const
Double_t Gamma() const
void SetTheta(Double_t theta)
Double_t operator()(int i) const
Double_t Phi() const
Double_t DeltaPhi(const TLorentzVector &) const
Double_t Mt() const
Double_t Perp() const
void SetZ(Double_t a)
Double_t E() const
void SetVect(const TVector3 &vect3)
void SetVectM(const TVector3 &spatial, Double_t mass)
void SetXYZM(Double_t x, Double_t y, Double_t z, Double_t m)
Double_t DeltaR(const TLorentzVector &, Bool_t useRapidity=kFALSE) const
TVector3 BoostVector() const
Double_t DrEtaPhi(const TLorentzVector &) const
TLorentzVector & operator-=(const TLorentzVector &)
Double_t Z() const
Double_t T() const
void SetX(Double_t a)
Mother of all ROOT objects.
Definition: TObject.h:37
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:893
The TRotation class describes a rotation of objects of the TVector3 class.
Definition: TRotation.h:20
TVector2 is a general two vector class, which can be used for the description of different vectors in...
Definition: TVector2.h:18
static Double_t Phi_mpi_pi(Double_t x)
Returns phi angle in the interval [-PI,PI)
Definition: TVector2.cxx:103
Double_t Z() const
Definition: TVector3.h:218
void SetY(Double_t)
Definition: TVector3.h:224
void SetXYZ(Double_t x, Double_t y, Double_t z)
Definition: TVector3.h:227
void SetPhi(Double_t)
Set phi keeping mag and theta constant (BaBar).
Definition: TVector3.cxx:368
Double_t fZ
Definition: TVector3.h:185
Double_t fX
Definition: TVector3.h:185
Double_t Phi() const
Return the azimuth angle. Returns phi from -pi to pi.
Definition: TVector3.cxx:236
Double_t Y() const
Definition: TVector3.h:217
Double_t Dot(const TVector3 &) const
Definition: TVector3.h:331
void RotateZ(Double_t)
Rotate vector around Z.
Definition: TVector3.cxx:285
void SetPerp(Double_t)
Definition: TVector3.h:388
Double_t Mag2() const
Definition: TVector3.h:339
Double_t X() const
Definition: TVector3.h:216
void RotateX(Double_t)
Rotate vector around X.
Definition: TVector3.cxx:263
Double_t Angle(const TVector3 &) const
Return the angle w.r.t. another 3-vector.
Definition: TVector3.cxx:203
Double_t PseudoRapidity() const
Double_t m = Mag(); return 0.5*log( (m+fZ)/(m-fZ) ); guard against Pt=0.
Definition: TVector3.cxx:326
void Rotate(Double_t, const TVector3 &)
Rotate vector.
Definition: TVector3.cxx:296
void GetXYZ(Double_t *carray) const
Definition: TVector3.h:233
Double_t CosTheta() const
Definition: TVector3.h:371
Double_t Mag() const
Definition: TVector3.h:86
Double_t Theta() const
Return the polar angle.
Definition: TVector3.cxx:244
Double_t fY
Definition: TVector3.h:185
void SetMag(Double_t)
Definition: TVector3.h:376
Double_t Perp() const
Return the transverse component (R in cylindrical coordinate system)
Definition: TVector3.cxx:219
TVector3 & Transform(const TRotation &)
Transform this vector with a TRotation.
Definition: TVector3.cxx:196
void SetX(Double_t)
Definition: TVector3.h:223
Double_t Perp2() const
Definition: TVector3.h:353
void RotateY(Double_t)
Rotate vector around Y.
Definition: TVector3.cxx:274
void SetZ(Double_t)
Definition: TVector3.h:225
void RotateUz(const TVector3 &)
NewUzVector must be normalized !
Definition: TVector3.cxx:305
void SetTheta(Double_t)
Set theta keeping mag and phi constant (BaBar).
Definition: TVector3.cxx:356
TPaveText * pt
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
double T(double x)
Definition: ChebyshevPol.h:34
static constexpr double mm
Short_t Max(Short_t a, Short_t b)
Definition: TMathBase.h:208
Double_t Sqrt(Double_t x)
Definition: TMath.h:691
Double_t Cos(Double_t)
Definition: TMath.h:643
Double_t Sin(Double_t)
Definition: TMath.h:639
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
auto * m
Definition: textangle.C:8
auto * a
Definition: textangle.C:12