57 : fLearningModel ( kFull )
58 , fImportanceCut ( 0 )
59 , fLinQuantile ( 0.025 )
61 , fAverageSupport ( 0.8 )
62 , fAverageRuleSigma( 0.4 )
66 , fRuleMinDist ( 1
e-3 )
67 , fNRulesGenerated ( 0 )
69 , fEventCacheOK ( true )
73 , fRuleMapEvents ( 0 )
83 : fAverageSupport ( 1 )
96 : fLearningModel ( kFull )
97 , fImportanceCut ( 0 )
98 , fLinQuantile ( 0.025 )
100 , fImportanceRef ( 1.0 )
101 , fAverageSupport ( 0.8 )
102 , fAverageRuleSigma( 0.4 )
106 , fRuleMinDist ( 1
e-3 )
107 , fNRulesGenerated ( 0 )
109 , fEventCacheOK ( true )
110 , fRuleMapOK ( true )
113 , fRuleMapEvents ( 0 )
124 for ( std::vector<Rule *>::iterator itrRule = fRules.begin(); itrRule != fRules.end(); ++itrRule ) {
136 SetAverageRuleSigma(0.4);
138 UInt_t nvars = GetMethodBase()->GetNvar();
139 fVarImportance.clear();
143 fVarImportance.resize( nvars,0.0 );
144 fLinPDFB.resize( nvars,0 );
145 fLinPDFS.resize( nvars,0 );
146 fImportanceRef = 1.0;
147 for (
UInt_t i=0; i<nvars; i++) {
148 fLinTermOK.push_back(
kTRUE);
155 fLogger->SetMinType(t);
164 return ( fRuleFit==0 ? 0:fRuleFit->GetMethodRuleFit());
173 return ( fRuleFit==0 ? 0:fRuleFit->GetMethodBase());
181 MakeRules( fRuleFit->GetForest() );
200 Int_t ncoeffs = fRules.size();
201 if (ncoeffs<1)
return 0;
205 for (
Int_t i=0; i<ncoeffs; i++) {
206 val = fRules[i]->GetCoefficient();
218 UInt_t nrules = fRules.size();
219 for (
UInt_t i=0; i<nrules; i++) {
220 fRules[i]->SetCoefficient(0.0);
229 UInt_t nrules = fRules.size();
230 if (
v.size()!=nrules) {
231 Log() << kFATAL <<
"<SetCoefficients> - BUG TRAP - input vector wrong size! It is = " <<
v.size()
232 <<
" when it should be = " << nrules <<
Endl;
234 for (
UInt_t i=0; i<nrules; i++) {
235 fRules[i]->SetCoefficient(
v[i]);
244 UInt_t nrules = fRules.size();
246 if (nrules==0)
return;
248 for (
UInt_t i=0; i<nrules; i++) {
249 v[i] = (fRules[i]->GetCoefficient());
258 return &(fRuleFit->GetTrainingEvents());
266 return fRuleFit->GetTrainingEvent(i);
274 Log() << kVERBOSE <<
"Removing similar rules; distance = " << fRuleMinDist <<
Endl;
276 UInt_t nrulesIn = fRules.size();
278 std::vector< Char_t > removeMe( nrulesIn,
false );
284 for (
UInt_t i=0; i<nrulesIn; i++) {
287 for (
UInt_t k=i+1; k<nrulesIn; k++) {
293 remind = (
r>0.5 ? k:i);
300 if (!removeMe[remind]) {
301 removeMe[remind] =
true;
311 for (
UInt_t i=0; i<nrulesIn; i++) {
313 theRule = fRules[ind];
314 fRules.erase( fRules.begin() + ind );
320 UInt_t nrulesOut = fRules.size();
321 Log() << kVERBOSE <<
"Removed " << nrulesIn - nrulesOut <<
" out of " << nrulesIn <<
" rules" <<
Endl;
329 UInt_t nrules = fRules.size();
330 if (nrules==0)
return;
331 Log() << kVERBOSE <<
"Removing rules with relative importance < " << fImportanceCut <<
Endl;
332 if (fImportanceCut<=0)
return;
338 for (
UInt_t i=0; i<nrules; i++) {
339 if (fRules[ind]->GetRelImportance()<fImportanceCut) {
340 therule = fRules[ind];
341 fRules.erase( fRules.begin() + ind );
347 Log() << kINFO <<
"Removed " << nrules-ind <<
" out of a total of " << nrules
348 <<
" rules with importance < " << fImportanceCut <<
Endl;
356 UInt_t nlin = fLinNorm.size();
358 Log() << kVERBOSE <<
"Removing linear terms with relative importance < " << fImportanceCut <<
Endl;
361 for (
UInt_t i=0; i<nlin; i++) {
362 fLinTermOK.push_back( (fLinImportance[i]/fImportanceRef > fImportanceCut) );
371 Log() << kVERBOSE <<
"Evaluating Rule support" <<
Endl;
377 SetAverageRuleSigma(0.4);
378 const std::vector<const Event *> *events = GetTrainingEvents();
382 if ((nrules>0) && (events->size()>0)) {
383 for ( std::vector< Rule * >::iterator itrRule=fRules.begin(); itrRule!=fRules.end(); ++itrRule ) {
387 for ( std::vector<const Event * >::const_iterator itrEvent=events->begin(); itrEvent!=events->end(); ++itrEvent ) {
388 if ((*itrRule)->EvalEvent( *(*itrEvent) )) {
389 ew = (*itrEvent)->GetWeight();
391 if (GetMethodRuleFit()->DataInfo().IsSignal(*itrEvent)) ssig += ew;
396 s = s/fRuleFit->GetNEveEff();
398 t = (t<0 ? 0:sqrt(t));
402 (*itrRule)->SetSupport(s);
403 (*itrRule)->SetNorm(t);
404 (*itrRule)->SetSSB( ssb );
405 (*itrRule)->SetSSBNeve(
Double_t(ssig+sbkg));
408 fAverageSupport = stot/nrules;
409 fAverageRuleSigma =
TMath::Sqrt(fAverageSupport*(1.0-fAverageSupport));
410 Log() << kVERBOSE <<
"Standard deviation of support = " << fAverageRuleSigma <<
Endl;
411 Log() << kVERBOSE <<
"Average rule support = " << fAverageSupport <<
Endl;
420 Double_t maxRuleImp = CalcRuleImportance();
421 Double_t maxLinImp = CalcLinImportance();
422 Double_t maxImp = (maxRuleImp>maxLinImp ? maxRuleImp : maxLinImp);
423 SetImportanceRef( maxImp );
431 for (
UInt_t i=0; i<fRules.size(); i++ ) {
432 fRules[i]->SetImportanceRef(impref);
434 fImportanceRef = impref;
443 Int_t nrules = fRules.size();
444 for (
int i=0; i<nrules; i++ ) {
445 fRules[i]->CalcImportance();
446 imp = fRules[i]->GetImportance();
447 if (imp>maxImp) maxImp = imp;
449 for (
Int_t i=0; i<nrules; i++ ) {
450 fRules[i]->SetImportanceRef(maxImp);
462 UInt_t nvars = fLinCoefficients.size();
463 fLinImportance.resize(nvars,0.0);
464 if (!DoLinear())
return maxImp;
474 for (
UInt_t i=0; i<nvars; i++ ) {
475 imp = fAverageRuleSigma*
TMath::Abs(fLinCoefficients[i]);
476 fLinImportance[i] = imp;
477 if (imp>maxImp) maxImp = imp;
487 Log() << kVERBOSE <<
"Compute variable importance" <<
Endl;
489 UInt_t nrules = fRules.size();
490 if (GetMethodBase()==0) Log() << kFATAL <<
"RuleEnsemble::CalcVarImportance() - should not be here!" <<
Endl;
491 UInt_t nvars = GetMethodBase()->GetNvar();
494 fVarImportance.resize(nvars,0);
497 for (
UInt_t ind=0; ind<nrules; ind++ ) {
498 rimp = fRules[ind]->GetImportance();
499 nvarsUsed = fRules[ind]->GetNumVarsUsed();
501 Log() << kFATAL <<
"<CalcVarImportance> Variables for importance calc!!!??? A BUG!" <<
Endl;
502 rimpN = (nvarsUsed > 0 ? rimp/nvarsUsed:0.0);
503 for (
UInt_t iv=0; iv<nvars; iv++ ) {
504 if (fRules[ind]->ContainsVariable(iv)) {
505 fVarImportance[iv] += rimpN;
512 for (
UInt_t iv=0; iv<fLinTermOK.size(); iv++ ) {
513 if (fLinTermOK[iv]) fVarImportance[iv] += fLinImportance[iv];
520 for (
UInt_t iv=0; iv<nvars; iv++ ) {
521 if ( fVarImportance[iv] > maximp ) maximp = fVarImportance[iv];
524 for (
UInt_t iv=0; iv<nvars; iv++ ) {
525 fVarImportance[iv] *= 1.0/maximp;
539 fRules.resize(rules.size());
540 for (
UInt_t i=0; i<fRules.size(); i++) {
541 fRules[i] = rules[i];
553 if (!DoRules())
return;
562 UInt_t ntrees = forest.size();
563 for (
UInt_t ind=0; ind<ntrees; ind++ ) {
565 MakeRulesFromTree( forest[ind] );
566 nrules = CalcNRules( forest[ind] );
567 nendn = (nrules/2) + 1;
569 sumn2 += nendn*nendn;
570 nrulesCheck += nrules;
572 Double_t nmean = (ntrees>0) ? sumnendn/ntrees : 0;
574 Double_t ndev = 2.0*(nmean-2.0-nsigm)/(nmean-2.0+nsigm);
576 Log() << kVERBOSE <<
"Average number of end nodes per tree = " << nmean <<
Endl;
577 if (ntrees>1) Log() << kVERBOSE <<
"sigma of ditto ( ~= mean-2 ?) = "
580 Log() << kVERBOSE <<
"Deviation from exponential model = " << ndev <<
Endl;
581 Log() << kVERBOSE <<
"Corresponds to L (eq. 13, RuleFit ppr) = " << nmean <<
Endl;
583 if (nrulesCheck !=
static_cast<Int_t>(fRules.size())) {
585 <<
"BUG! number of generated and possible rules do not match! N(rules) = " << fRules.size()
586 <<
" != " << nrulesCheck <<
Endl;
588 Log() << kVERBOSE <<
"Number of generated rules: " << fRules.size() <<
Endl;
591 fNRulesGenerated = fRules.size();
593 RemoveSimilarRules();
605 if (!DoLinear())
return;
607 const std::vector<const Event *> *events = GetTrainingEvents();
608 UInt_t neve = events->size();
609 UInt_t nvars = ((*events)[0])->GetNVariables();
611 typedef std::pair< Double_t, Int_t> dataType;
612 typedef std::pair< Double_t, dataType > dataPoint;
614 std::vector< std::vector<dataPoint> > vardata(nvars);
615 std::vector< Double_t > varsum(nvars,0.0);
616 std::vector< Double_t > varsum2(nvars,0.0);
621 for (
UInt_t i=0; i<neve; i++) {
622 ew = ((*events)[i])->GetWeight();
624 val = ((*events)[i])->GetValue(
v);
625 vardata[
v].push_back( dataPoint( val, dataType(ew,((*events)[i])->GetClass()) ) );
631 fLinCoefficients.clear();
633 fLinDP.resize(nvars,0);
634 fLinDM.resize(nvars,0);
635 fLinCoefficients.resize(nvars,0);
636 fLinNorm.resize(nvars,0);
638 Double_t averageWeight = neve ? fRuleFit->GetNEveEff()/
static_cast<Double_t>(neve) : 0;
655 std::sort( vardata[
v].begin(),vardata[
v].end() );
656 nquant = fLinQuantile*fRuleFit->GetNEveEff();
660 while ( (ie<neve) && (neff<nquant) ) {
661 neff += vardata[
v][ie].second.first;
664 indquantM = (ie==0 ? 0:ie-1);
668 while ( (ie>0) && (neff<nquant) ) {
670 neff += vardata[
v][ie].second.first;
672 indquantP = (ie==neve ? ie=neve-1:ie);
674 fLinDM[
v] = vardata[
v][indquantM].first;
675 fLinDP[
v] = vardata[
v][indquantP].first;
679 if (fLinPDFB[
v])
delete fLinPDFB[
v];
680 if (fLinPDFS[
v])
delete fLinPDFS[
v];
681 fLinPDFB[
v] =
new TH1F(
Form(
"bkgvar%d",
v),
"bkg temphist",40,fLinDM[
v],fLinDP[
v]);
682 fLinPDFS[
v] =
new TH1F(
Form(
"sigvar%d",
v),
"sig temphist",40,fLinDM[
v],fLinDP[
v]);
683 fLinPDFB[
v]->Sumw2();
684 fLinPDFS[
v]->Sumw2();
688 const Double_t w = 1.0/fRuleFit->GetNEveEff();
689 for (ie=0; ie<neve; ie++) {
690 val = vardata[
v][ie].first;
691 ew = vardata[
v][ie].second.first;
692 type = vardata[
v][ie].second.second;
695 varsum2[
v] += ew*lx*lx;
698 if (
type==1) fLinPDFS[
v]->Fill(lx,w*ew);
699 else fLinPDFB[
v]->Fill(lx,w*ew);
705 stdl =
TMath::Sqrt( (varsum2[
v] - (varsum[
v]*varsum[
v]/fRuleFit->GetNEveEff()))/(fRuleFit->GetNEveEff()-averageWeight) );
706 fLinNorm[
v] = CalcLinNorm(stdl);
712 fLinPDFS[
v]->Write();
713 fLinPDFB[
v]->Write();
723 UInt_t nvars=fLinDP.size();
731 Int_t bin = fLinPDFS[
v]->FindBin(val);
732 fstot += fLinPDFS[
v]->GetBinContent(bin);
733 fbtot += fLinPDFB[
v]->GetBinContent(bin);
735 if (nvars<1)
return 0;
736 ntot = (fstot+fbtot)/
Double_t(nvars);
738 return fstot/(fstot+fbtot);
752 UInt_t nrules = fRules.size();
753 for (
UInt_t ir=0; ir<nrules; ir++) {
754 if (fEventRuleVal[ir]>0) {
755 ssb = fEventRuleVal[ir]*GetRulesConst(ir)->GetSSB();
756 neve = GetRulesConst(ir)->GetSSBNeve();
765 if (ntot>0)
return nsig/ntot;
794 if (DoLinear()) pl = PdfLinear(nls, nlt);
795 if (DoRules()) pr = PdfRule(nrs, nrt);
797 if ((nlt>0) && (nrt>0)) nt=2.0;
809 const std::vector<const Event *> *events = GetTrainingEvents();
810 const UInt_t neve = events->size();
811 const UInt_t nvars = GetMethodBase()->GetNvar();
812 const UInt_t nrules = fRules.size();
813 const Event *eveData;
829 std::vector<Int_t> varcnt;
837 varcnt.resize(nvars,0);
838 fRuleVarFrac.clear();
839 fRuleVarFrac.resize(nvars,0);
841 for (
UInt_t i=0; i<nrules; i++ ) {
843 if (fRules[i]->ContainsVariable(
v)) varcnt[
v]++;
845 sigRule = fRules[i]->IsSignalRule();
860 eveData = (*events)[
e];
861 tagged = fRules[i]->EvalEvent(*eveData);
862 sigTag = (tagged && sigRule);
863 bkgTag = (tagged && (!sigRule));
865 sigTrue = (eveData->
GetClass() == 0);
868 if (sigTag && sigTrue) nss++;
869 if (sigTag && !sigTrue) nsb++;
870 if (bkgTag && sigTrue) nbs++;
871 if (bkgTag && !sigTrue) nbb++;
875 if (ntag>0 && neve > 0) {
884 fRuleFSig = (nsig>0) ?
static_cast<Double_t>(nsig)/
static_cast<Double_t>(nsig+nbkg) : 0;
895 const UInt_t nrules = fRules.size();
899 for (
UInt_t i=0; i<nrules; i++ ) {
900 nc =
static_cast<Double_t>(fRules[i]->GetNcuts());
907 fRuleNCave = sumNc/nrules;
917 Log() << kHEADER <<
"-------------------RULE ENSEMBLE SUMMARY------------------------" <<
Endl;
919 if (mrf) Log() << kINFO <<
"Tree training method : " << (mrf->
UseBoost() ?
"AdaBoost":
"Random") <<
Endl;
920 Log() << kINFO <<
"Number of events per tree : " << fRuleFit->GetNTreeSample() <<
Endl;
921 Log() << kINFO <<
"Number of trees : " << fRuleFit->GetForest().size() <<
Endl;
922 Log() << kINFO <<
"Number of generated rules : " << fNRulesGenerated <<
Endl;
923 Log() << kINFO <<
"Idem, after cleanup : " << fRules.size() <<
Endl;
924 Log() << kINFO <<
"Average number of cuts per rule : " <<
Form(
"%8.2f",fRuleNCave) <<
Endl;
925 Log() << kINFO <<
"Spread in number of cuts per rules : " <<
Form(
"%8.2f",fRuleNCsig) <<
Endl;
926 Log() << kVERBOSE <<
"Complexity : " <<
Form(
"%8.2f",fRuleNCave*fRuleNCsig) <<
Endl;
927 Log() << kINFO <<
"----------------------------------------------------------------" <<
Endl;
928 Log() << kINFO <<
Endl;
936 const EMsgType kmtype=kINFO;
937 const Bool_t isDebug = (fLogger->GetMinType()<=kDEBUG);
939 Log() << kmtype <<
Endl;
940 Log() << kmtype <<
"================================================================" <<
Endl;
941 Log() << kmtype <<
" M o d e l " <<
Endl;
942 Log() << kmtype <<
"================================================================" <<
Endl;
945 const UInt_t nvars = GetMethodBase()->GetNvar();
946 const Int_t nrules = fRules.size();
949 for (
UInt_t iv = 0; iv<fVarImportance.size(); iv++) {
950 if (GetMethodBase()->GetInputLabel(iv).Length() > maxL) maxL = GetMethodBase()->GetInputLabel(iv).Length();
954 Log() << kDEBUG <<
"Variable importance:" <<
Endl;
955 for (
UInt_t iv = 0; iv<fVarImportance.size(); iv++) {
956 Log() << kDEBUG << std::setw(maxL) << GetMethodBase()->GetInputLabel(iv)
957 << std::resetiosflags(std::ios::right)
958 <<
" : " <<
Form(
" %3.3f",fVarImportance[iv]) <<
Endl;
962 Log() << kHEADER <<
"Offset (a0) = " << fOffset <<
Endl;
965 if (fLinNorm.size() > 0) {
966 Log() << kmtype <<
"------------------------------------" <<
Endl;
967 Log() << kmtype <<
"Linear model (weights unnormalised)" <<
Endl;
968 Log() << kmtype <<
"------------------------------------" <<
Endl;
969 Log() << kmtype << std::setw(maxL) <<
"Variable"
970 << std::resetiosflags(std::ios::right) <<
" : "
971 << std::setw(11) <<
" Weights"
972 << std::resetiosflags(std::ios::right) <<
" : "
974 << std::resetiosflags(std::ios::right)
976 Log() << kmtype <<
"------------------------------------" <<
Endl;
977 for (
UInt_t i=0; i<fLinNorm.size(); i++ ) {
978 Log() << kmtype << std::setw(std::max(maxL,8)) << GetMethodBase()->GetInputLabel(i);
981 << std::resetiosflags(std::ios::right)
982 <<
" : " <<
Form(
" %10.3e",fLinCoefficients[i]*fLinNorm[i])
983 <<
" : " <<
Form(
" %3.3f",fLinImportance[i]/fImportanceRef) <<
Endl;
986 Log() << kmtype <<
"-> importance below threshold = "
987 <<
Form(
" %3.3f",fLinImportance[i]/fImportanceRef) <<
Endl;
990 Log() << kmtype <<
"------------------------------------" <<
Endl;
993 else Log() << kmtype <<
"Linear terms were disabled" <<
Endl;
995 if ((!DoRules()) || (nrules==0)) {
997 Log() << kmtype <<
"Rule terms were disabled" <<
Endl;
1000 Log() << kmtype <<
"Even though rules were included in the model, none passed! " << nrules <<
Endl;
1004 Log() << kmtype <<
"Number of rules = " << nrules <<
Endl;
1006 Log() << kmtype <<
"N(cuts) in rules, average = " << fRuleNCave <<
Endl;
1007 Log() << kmtype <<
" RMS = " << fRuleNCsig <<
Endl;
1008 Log() << kmtype <<
"Fraction of signal rules = " << fRuleFSig <<
Endl;
1009 Log() << kmtype <<
"Fraction of rules containing a variable (%):" <<
Endl;
1011 Log() << kmtype <<
" " << std::setw(maxL) << GetMethodBase()->GetInputLabel(
v);
1012 Log() << kmtype <<
Form(
" = %2.2f",fRuleVarFrac[
v]*100.0) <<
" %" <<
Endl;
1018 std::list< std::pair<double,int> > sortedImp;
1019 for (
Int_t i=0; i<nrules; i++) {
1020 sortedImp.push_back( std::pair<double,int>( fRules[i]->GetImportance(),i ) );
1024 Log() << kmtype <<
"Printing the first " << printN <<
" rules, ordered in importance." <<
Endl;
1026 for ( std::list< std::pair<double,int> >::reverse_iterator itpair = sortedImp.rbegin();
1027 itpair != sortedImp.rend(); ++itpair ) {
1028 ind = itpair->second;
1032 fRules[ind]->PrintLogger(
Form(
"Rule %4d : ",pind+1));
1035 if (nrules==printN) {
1036 Log() << kmtype <<
"All rules printed" <<
Endl;
1039 Log() << kmtype <<
"Skipping the next " << nrules-printN <<
" rules" <<
Endl;
1045 Log() << kmtype <<
"================================================================" <<
Endl;
1046 Log() << kmtype <<
Endl;
1054 Int_t dp = os.precision();
1055 UInt_t nrules = fRules.size();
1058 os <<
"ImportanceCut= " << fImportanceCut << std::endl;
1059 os <<
"LinQuantile= " << fLinQuantile << std::endl;
1060 os <<
"AverageSupport= " << fAverageSupport << std::endl;
1061 os <<
"AverageRuleSigma= " << fAverageRuleSigma << std::endl;
1062 os <<
"Offset= " << fOffset << std::endl;
1063 os <<
"NRules= " << nrules << std::endl;
1064 for (
UInt_t i=0; i<nrules; i++){
1065 os <<
"***Rule " << i << std::endl;
1066 (fRules[i])->PrintRaw(os);
1068 UInt_t nlinear = fLinNorm.size();
1070 os <<
"NLinear= " << fLinTermOK.size() << std::endl;
1071 for (
UInt_t i=0; i<nlinear; i++) {
1072 os <<
"***Linear " << i << std::endl;
1073 os << std::setprecision(10) << (fLinTermOK[i] ? 1:0) <<
" "
1074 << fLinCoefficients[i] <<
" "
1075 << fLinNorm[i] <<
" "
1078 << fLinImportance[i] <<
" " << std::endl;
1080 os << std::setprecision(dp);
1090 UInt_t nrules = fRules.size();
1091 UInt_t nlinear = fLinNorm.size();
1094 gTools().
AddAttr( re,
"LearningModel", (
int)fLearningModel );
1098 gTools().
AddAttr( re,
"AverageRuleSigma", fAverageRuleSigma );
1100 for (
UInt_t i=0; i<nrules; i++) fRules[i]->AddXMLTo(re);
1102 for (
UInt_t i=0; i<nlinear; i++) {
1122 Int_t iLearningModel;
1127 gTools().
ReadAttr( wghtnode,
"AverageSupport", fAverageSupport );
1128 gTools().
ReadAttr( wghtnode,
"AverageRuleSigma", fAverageRuleSigma );
1135 fRules.resize( nrules );
1137 for (i=0; i<nrules; i++) {
1138 fRules[i] =
new Rule();
1139 fRules[i]->SetRuleEnsemble(
this );
1140 fRules[i]->ReadFromXML( ch );
1146 fLinNorm .resize( nlinear );
1147 fLinTermOK .resize( nlinear );
1148 fLinCoefficients.resize( nlinear );
1149 fLinDP .resize( nlinear );
1150 fLinDM .resize( nlinear );
1151 fLinImportance .resize( nlinear );
1157 fLinTermOK[i] = (iok == 1);
1181 istr >> dummy >> fImportanceCut;
1182 istr >> dummy >> fLinQuantile;
1183 istr >> dummy >> fAverageSupport;
1184 istr >> dummy >> fAverageRuleSigma;
1185 istr >> dummy >> fOffset;
1186 istr >> dummy >> nrules;
1192 for (
UInt_t i=0; i<nrules; i++){
1193 istr >> dummy >> idum;
1194 fRules.push_back(
new Rule() );
1195 (fRules.back())->SetRuleEnsemble(
this );
1196 (fRules.back())->ReadRaw(istr);
1204 istr >> dummy >> nlinear;
1206 fLinNorm .resize( nlinear );
1207 fLinTermOK .resize( nlinear );
1208 fLinCoefficients.resize( nlinear );
1209 fLinDP .resize( nlinear );
1210 fLinDM .resize( nlinear );
1211 fLinImportance .resize( nlinear );
1215 for (
UInt_t i=0; i<nlinear; i++) {
1216 istr >> dummy >> idum;
1218 fLinTermOK[i] = (iok==1);
1219 istr >> fLinCoefficients[i];
1220 istr >> fLinNorm[i];
1223 istr >> fLinImportance[i];
1232 if(
this != &other) {
1259 if (dtree==0)
return 0;
1261 Int_t nendnodes = 0;
1262 FindNEndNodes( node, nendnodes );
1263 return 2*(nendnodes-1);
1271 if (node==0)
return;
1278 FindNEndNodes( nodeR, nendnodes );
1279 FindNEndNodes( nodeL, nendnodes );
1296 if (node==0)
return;
1302 Rule *rule = MakeTheRule(node);
1304 fRules.push_back( rule );
1309 Log() << kFATAL <<
"<AddRule> - ERROR failed in creating a rule! BUG!" <<
Endl;
1323 Log() << kFATAL <<
"<MakeTheRule> Input node is NULL. Should not happen. BUG!" <<
Endl;
1331 std::vector< const Node * > nodeVec;
1332 const Node *parent = node;
1337 nodeVec.push_back( node );
1340 if (!parent)
continue;
1343 nodeVec.insert( nodeVec.begin(), parent );
1346 if (nodeVec.size()<2) {
1347 Log() << kFATAL <<
"<MakeTheRule> BUG! Inconsistent Rule!" <<
Endl;
1350 Rule *rule =
new Rule(
this, nodeVec );
1360 Log() << kVERBOSE <<
"Making Rule map for all events" <<
Endl;
1362 if (events==0) events = GetTrainingEvents();
1363 if ((ifirst==0) || (ilast==0) || (ifirst>ilast)) {
1365 ilast = events->size()-1;
1368 if ((events!=fRuleMapEvents) ||
1369 (ifirst!=fRuleMapInd0) ||
1370 (ilast !=fRuleMapInd1)) {
1375 Log() << kVERBOSE <<
"<MakeRuleMap> Map is already valid" <<
Endl;
1378 fRuleMapEvents = events;
1379 fRuleMapInd0 = ifirst;
1380 fRuleMapInd1 = ilast;
1382 UInt_t nrules = GetNRules();
1384 Log() << kVERBOSE <<
"No rules found in MakeRuleMap()" <<
Endl;
1391 std::vector<UInt_t> ruleind;
1393 for (
UInt_t i=ifirst; i<=ilast; i++) {
1395 fRuleMap.push_back( ruleind );
1397 if (fRules[
r]->EvalEvent(*((*events)[i]))) {
1398 fRuleMap.back().push_back(
r);
1403 Log() << kVERBOSE <<
"Made rule map for event# " << ifirst <<
" : " << ilast <<
Endl;
1411 os <<
"DON'T USE THIS - TO BE REMOVED" << std::endl;
R__EXTERN TRandom * gRandom
char * Form(const char *fmt,...)
1-D histogram with a float per channel (see TH1 documentation)}
Short_t GetSelector() const
Implementation of a Decision Tree.
virtual DecisionTreeNode * GetRoot() const
Virtual base Class for all MVA method.
Bool_t IsSilentFile() const
J Friedman's RuleFit method.
ostringstream derivative to redirect and format output
Node for the BinarySearch or Decision Trees.
virtual Node * GetLeft() const
virtual Node * GetParent() const
virtual Node * GetRight() const
virtual ~RuleEnsemble()
destructor
void CalcVarImportance()
Calculates variable importance using eq (35) in RuleFit paper by Friedman et.al.
void SetImportanceRef(Double_t impref)
set reference importance
void CalcImportance()
calculate the importance of each rule
void PrintRuleGen() const
print rule generation info
void MakeRuleMap(const std::vector< const TMVA::Event * > *events=0, UInt_t ifirst=0, UInt_t ilast=0)
Makes rule map for all events.
Int_t CalcNRules(const TMVA::DecisionTree *dtree)
calculate the number of rules
void ResetCoefficients()
reset all rule coefficients
void SetMsgType(EMsgType t)
Double_t GetLinQuantile() const
void ReadRaw(std::istream &istr)
read rule ensemble from stream
void AddRule(const Node *node)
add a new rule to the tree
void ReadFromXML(void *wghtnode)
read rules from XML
Double_t GetImportanceCut() const
const Event * GetTrainingEvent(UInt_t i) const
get the training event from the rule fitter
const std::vector< const TMVA::Event * > * GetTrainingEvents() const
get list of training events from the rule fitter
Double_t GetRuleMinDist() const
void SetRules(const std::vector< TMVA::Rule * > &rules)
set rules
void MakeRules(const std::vector< const TMVA::DecisionTree * > &forest)
Makes rules from the given decision tree.
void RemoveSimilarRules()
remove rules that behave similar
void FindNEndNodes(const TMVA::Node *node, Int_t &nendnodes)
find the number of leaf nodes
RuleEnsemble()
constructor
const std::vector< Double_t > & GetVarImportance() const
void CleanupRules()
cleanup rules
void Initialize(const RuleFit *rf)
Initializes all member variables with default values.
void CleanupLinear()
cleanup linear model
void RuleResponseStats()
calculate various statistics for this rule
const RuleFit * GetRuleFit() const
void * AddXMLTo(void *parent) const
write rules to XML
const std::vector< TMVA::Rule * > & GetRulesConst() const
const MethodRuleFit * GetMethodRuleFit() const
Get a pointer to the original MethodRuleFit.
void MakeModel()
create model
void RuleStatistics()
calculate various statistics for this rule
void SetCoefficients(const std::vector< Double_t > &v)
set all rule coefficients
void Print() const
print function
Double_t PdfRule(Double_t &nsig, Double_t &ntot) const
This function returns Pr( y = 1 | x ) for rules.
const MethodBase * GetMethodBase() const
Get a pointer to the original MethodRuleFit.
Double_t GetOffset() const
void Copy(RuleEnsemble const &other)
copy function
Double_t CalcLinImportance()
calculate the linear importance for each rule
Double_t CalcRuleImportance()
calculate importance of each rule
void PrintRaw(std::ostream &os) const
write rules to stream
Double_t fAverageRuleSigma
void CalcRuleSupport()
calculate the support for all rules
ELearningModel GetLearningModel() const
Double_t PdfLinear(Double_t &nsig, Double_t &ntot) const
This function returns Pr( y = 1 | x ) for the linear terms.
Double_t CoefficientRadius()
Calculates sqrt(Sum(a_i^2)), i=1..N (NOTE do not include a0)
void MakeRulesFromTree(const DecisionTree *dtree)
create rules from the decision tree structure
void MakeLinearTerms()
Make the linear terms as in eq 25, ref 2 For this the b and (1-b) quantiles are needed.
Rule * MakeTheRule(const Node *node)
Make a Rule from a given Node.
void GetCoefficients(std::vector< Double_t > &v)
Retrieve all rule coefficients.
Double_t FStar() const
We want to estimate F* = argmin Eyx( L(y,F(x) ), min wrt F(x) F(x) = FL(x) + FR(x) ,...
A class implementing various fits of rule ensembles.
Implementation of a rule.
void SetMsgType(EMsgType t)
virtual Double_t Rndm()
Machine independent random number generator.
std::ostream & operator<<(std::ostream &os, const BinaryTree &tree)
MsgLogger & Endl(MsgLogger &ml)
Short_t Max(Short_t a, Short_t b)
Double_t Sqrt(Double_t x)
Short_t Min(Short_t a, Short_t b)