69 lambda(
"lambda",
"lambda",this,_lambda),
72 fHasIssuedConvWarning(false),
73 fHasIssuedSumWarning(false)
76 ccoutD(InputArguments) <<
"RooNonCentralChiSquare::ctor(" <<
GetName() <<
77 "MathMore Available, will use Bessel function expressions unless SetForceSum(true) "<< endl ;
90 lambda(
"lambda",this,other.lambda),
91 fErrorTol(other.fErrorTol),
92 fMaxIters(other.fMaxIters),
93 fHasIssuedConvWarning(false),
94 fHasIssuedSumWarning(false)
97 ccoutD(InputArguments) <<
"RooNonCentralChiSquare::ctor(" <<
GetName() <<
98 "MathMore Available, will use Bessel function expressions unless SetForceSum(true) "<< endl ;
109#ifndef R__HAS_MATHMORE
111 ccoutD(InputArguments) <<
"RooNonCentralChiSquare::SetForceSum" <<
GetName() <<
112 "MathMore is not available- ForceSum must be on "<< endl ;
150 coutI(InputArguments) <<
"RooNonCentralChiSquare sum being forced" << endl ;
162 for(
int i = iDominant; ; ++i){
166 if(ithTerm/
sum < errorTol)
169 if( i>iDominant+MaxIters){
172 coutW(Eval) <<
"RooNonCentralChiSquare did not converge: for x=" <<
x <<
" k="<<
k
173 <<
", lambda="<<
lambda <<
" fractional error = " << ithTerm/
sum
174 <<
"\n either adjust tolerance with SetErrorTolerance(tol) or max_iter with SetMaxIter(max_it)"
181 for(
int i = iDominant - 1; i >= 0; --i){
193#ifdef R__HAS_MATHMORE
196 coutF(Eval) <<
"RooNonCentralChisquare: ForceSum must be set" << endl;
240 for(
int i = iDominant; ; ++i){
246 if(ithTerm/
sum < errorTol)
249 if( i>iDominant+MaxIters){
252 coutW(Eval) <<
"RooNonCentralChiSquare Normalization did not converge: for k="<<
k
253 <<
", lambda="<<
lambda <<
" fractional error = " << ithTerm/
sum
254 <<
"\n either adjust tolerance with SetErrorTolerance(tol) or max_iter with SetMaxIter(max_it)"
261 for(
int i = iDominant - 1; i >= 0; --i){
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Bool_t matchArgs(const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgProxy &a) const
Utility function for use in getAnalyticalIntegral().
RooArgSet is a container object that can hold multiple RooAbsArg objects.
The PDF of the Non-Central Chi Square distribution for n degrees of freedom.
Double_t analyticalIntegral(Int_t code, const char *rangeName=0) const
Implements the actual analytical integral(s) advertised by getAnalyticalIntegral.
Double_t evaluate() const
Evaluate this PDF / function / constant. Needs to be overridden by all derived classes.
Int_t getAnalyticalIntegral(RooArgSet &allVars, RooArgSet &analVars, const char *rangeName=0) const
Interface function getAnalyticalIntergral advertises the analytical integrals that are supported.
Bool_t fHasIssuedConvWarning
Bool_t fHasIssuedSumWarning
void SetForceSum(Bool_t flag)
double min(const char *rname=0) const
Query lower limit of range. This requires the payload to be RooAbsRealLValue or derived.
double max(const char *rname=0) const
Query upper limit of range. This requires the payload to be RooAbsRealLValue or derived.
virtual const char * GetName() const
Returns name of object.
double chisquared_pdf(double x, double r, double x0=0)
Probability density function of the distribution with degrees of freedom.
double noncentral_chisquared_pdf(double x, double r, double lambda)
Probability density function of the non central distribution with degrees of freedom and the noon-c...
double chisquared_cdf(double x, double r, double x0=0)
Cumulative distribution function of the distribution with degrees of freedom (lower tail).
Double_t Floor(Double_t x)
Double_t Gamma(Double_t z)
Computation of gamma(z) for all z.
static uint64_t sum(uint64_t i)