Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
RooHist.cxx
Go to the documentation of this file.
1/*****************************************************************************
2 * Project: RooFit *
3 * Package: RooFitCore *
4 * @(#)root/roofitcore:$Id$
5 * Authors: *
6 * WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
7 * DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
8 * *
9 * Copyright (c) 2000-2005, Regents of the University of California *
10 * and Stanford University. All rights reserved. *
11 * *
12 * Redistribution and use in source and binary forms, *
13 * with or without modification, are permitted according to the terms *
14 * listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
15 *****************************************************************************/
16
17/**
18\file RooHist.cxx
19\class RooHist
20\ingroup Roofitcore
21
22A RooHist is a graphical representation of binned data based on the
23TGraphAsymmErrors class. Error bars are calculated using either Poisson
24or Binomial statistics. A RooHist is used to represent histograms in
25a RooPlot.
26**/
27
28#include "RooFit.h"
29
30#include "RooHist.h"
31#include "RooHistError.h"
32#include "RooCurve.h"
33#include "RooScaledFunc.h"
34#include "RooMsgService.h"
35
36#include "TH1.h"
37#include "TClass.h"
38#include "Riostream.h"
39#include <iomanip>
40
41using namespace std;
42
44 ;
45
46
47////////////////////////////////////////////////////////////////////////////////
48/// Default constructor
49
51 _nominalBinWidth(1),
52 _nSigma(1),
53 _entries(0),
54 _rawEntries(0)
55{
56}
57
58
59
60////////////////////////////////////////////////////////////////////////////////
61/// Create an empty histogram that can be filled with the addBin()
62/// and addAsymmetryBin() methods. Use the optional parameter to
63/// specify the confidence level in units of sigma to use for
64/// calculating error bars. The nominal bin width specifies the
65/// default used by addBin(), and is used to set the relative
66/// normalization of bins with different widths.
67
68 RooHist::RooHist(Double_t nominalBinWidth, Double_t nSigma, Double_t /*xErrorFrac*/, Double_t /*scaleFactor*/) :
69 TGraphAsymmErrors(), _nominalBinWidth(nominalBinWidth), _nSigma(nSigma), _rawEntries(-1)
70{
71 initialize();
72}
73
74
75////////////////////////////////////////////////////////////////////////////////
76/// Create a histogram from the contents of the specified TH1 object
77/// which may have fixed or variable bin widths. Error bars are
78/// calculated using Poisson statistics. Prints a warning and rounds
79/// any bins with non-integer contents. Use the optional parameter to
80/// specify the confidence level in units of sigma to use for
81/// calculating error bars. The nominal bin width specifies the
82/// default used by addBin(), and is used to set the relative
83/// normalization of bins with different widths. If not set, the
84/// nominal bin width is calculated as range/nbins.
85
86RooHist::RooHist(const TH1 &data, Double_t nominalBinWidth, Double_t nSigma, RooAbsData::ErrorType etype, Double_t xErrorFrac,
87 Bool_t correctForBinWidth, Double_t scaleFactor) :
88 TGraphAsymmErrors(), _nominalBinWidth(nominalBinWidth), _nSigma(nSigma), _rawEntries(-1)
89{
90 if(etype == RooAbsData::Poisson && correctForBinWidth == false) {
91 throw std::invalid_argument(
92 "To ensure consistent behavior prior releases, it's not possible to create a RooHist from a TH1 with no bin width correction when using Poisson errors.");
93 }
94
95 initialize();
96 // copy the input histogram's name and title
97 SetName(data.GetName());
98 SetTitle(data.GetTitle());
99 // calculate our nominal bin width if necessary
100 if(_nominalBinWidth == 0) {
101 const TAxis *axis= ((TH1&)data).GetXaxis();
102 if(axis->GetNbins() > 0) _nominalBinWidth= (axis->GetXmax() - axis->GetXmin())/axis->GetNbins();
103 }
105
106 // initialize our contents from the input histogram's contents
107 Int_t nbin= data.GetNbinsX();
108 for(Int_t bin= 1; bin <= nbin; bin++) {
109 Axis_t x= data.GetBinCenter(bin);
110 Stat_t y= data.GetBinContent(bin);
111 Stat_t dy = data.GetBinError(bin) ;
112 if (etype==RooAbsData::Poisson) {
113 addBin(x,y,data.GetBinWidth(bin),xErrorFrac,scaleFactor);
114 } else if (etype==RooAbsData::SumW2) {
115 addBinWithError(x,y,dy,dy,data.GetBinWidth(bin),xErrorFrac,correctForBinWidth,scaleFactor);
116 } else {
117 addBinWithError(x,y,0,0,data.GetBinWidth(bin),xErrorFrac,correctForBinWidth,scaleFactor);
118 }
119 }
120 // add over/underflow bins to our event count
121 _entries+= data.GetBinContent(0) + data.GetBinContent(nbin+1);
122}
123
124
125
126////////////////////////////////////////////////////////////////////////////////
127/// Create a histogram from the asymmetry between the specified TH1 objects
128/// which may have fixed or variable bin widths, but which must both have
129/// the same binning. The asymmetry is calculated as (1-2)/(1+2). Error bars are
130/// calculated using Binomial statistics. Prints a warning and rounds
131/// any bins with non-integer contents. Use the optional parameter to
132/// specify the confidence level in units of sigma to use for
133/// calculating error bars. The nominal bin width specifies the
134/// default used by addAsymmetryBin(), and is used to set the relative
135/// normalization of bins with different widths. If not set, the
136/// nominal bin width is calculated as range/nbins.
137
138RooHist::RooHist(const TH1 &data1, const TH1 &data2, Double_t nominalBinWidth, Double_t nSigma,
139 RooAbsData::ErrorType etype, Double_t xErrorFrac, Bool_t efficiency, Double_t scaleFactor) :
140 TGraphAsymmErrors(), _nominalBinWidth(nominalBinWidth), _nSigma(nSigma), _rawEntries(-1)
141{
142 initialize();
143 // copy the first input histogram's name and title
144 SetName(data1.GetName());
145 SetTitle(data1.GetTitle());
146 // calculate our nominal bin width if necessary
147 if(_nominalBinWidth == 0) {
148 const TAxis *axis= ((TH1&)data1).GetXaxis();
149 if(axis->GetNbins() > 0) _nominalBinWidth= (axis->GetXmax() - axis->GetXmin())/axis->GetNbins();
150 }
151
152 if (!efficiency) {
153 setYAxisLabel(Form("Asymmetry (%s - %s)/(%s + %s)",
154 data1.GetName(),data2.GetName(),data1.GetName(),data2.GetName()));
155 } else {
156 setYAxisLabel(Form("Efficiency (%s)/(%s + %s)",
157 data1.GetName(),data1.GetName(),data2.GetName()));
158 }
159 // initialize our contents from the input histogram contents
160 Int_t nbin= data1.GetNbinsX();
161 if(data2.GetNbinsX() != nbin) {
162 coutE(InputArguments) << "RooHist::RooHist: histograms have different number of bins" << endl;
163 return;
164 }
165 for(Int_t bin= 1; bin <= nbin; bin++) {
166 Axis_t x= data1.GetBinCenter(bin);
167 if(fabs(data2.GetBinCenter(bin)-x)>1e-10) {
168 coutW(InputArguments) << "RooHist::RooHist: histograms have different centers for bin " << bin << endl;
169 }
170 Stat_t y1= data1.GetBinContent(bin);
171 Stat_t y2= data2.GetBinContent(bin);
172 if (!efficiency) {
173
174 if (etype==RooAbsData::Poisson) {
175 addAsymmetryBin(x,roundBin(y1),roundBin(y2),data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
176 } else if (etype==RooAbsData::SumW2) {
177 Stat_t dy1= data1.GetBinError(bin);
178 Stat_t dy2= data2.GetBinError(bin);
179 addAsymmetryBinWithError(x,y1,y2,dy1,dy2,data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
180 } else {
181 addAsymmetryBinWithError(x,y1,y2,0,0,data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
182 }
183
184 } else {
185
186 if (etype==RooAbsData::Poisson) {
187 addEfficiencyBin(x,roundBin(y1),roundBin(y2),data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
188 } else if (etype==RooAbsData::SumW2) {
189 Stat_t dy1= data1.GetBinError(bin);
190 Stat_t dy2= data2.GetBinError(bin);
191 addEfficiencyBinWithError(x,y1,y2,dy1,dy2,data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
192 } else {
193 addEfficiencyBinWithError(x,y1,y2,0,0,data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
194 }
195
196 }
197
198 }
199 // we do not have a meaningful number of entries
200 _entries= -1;
201}
202
203
204
205////////////////////////////////////////////////////////////////////////////////
206/// Create histogram as sum of two existing histograms. If Poisson errors are selected the histograms are
207/// added and Poisson confidence intervals are calculated for the summed content. If wgt1 and wgt2 are not
208/// 1 in this mode, a warning message is printed. If SumW2 errors are selected the histograms are added
209/// and the histograms errors are added in quadrature, taking the weights into account.
210
211RooHist::RooHist(const RooHist& hist1, const RooHist& hist2, Double_t wgt1, Double_t wgt2,
212 RooAbsData::ErrorType etype, Double_t xErrorFrac) : _rawEntries(-1)
213{
214 // Initialize the histogram
215 initialize() ;
216
217 // Copy all non-content properties from hist1
218 SetName(hist1.GetName()) ;
219 SetTitle(hist1.GetTitle()) ;
221 _nSigma=hist1._nSigma ;
223
224 if (!hist1.hasIdenticalBinning(hist2)) {
225 coutE(InputArguments) << "RooHist::RooHist input histograms have incompatible binning, combined histogram will remain empty" << endl ;
226 return ;
227 }
228
229 if (etype==RooAbsData::Poisson) {
230 // Add histograms with Poisson errors
231
232 // Issue warning if weights are not 1
233 if (wgt1!=1.0 || wgt2 != 1.0) {
234 coutW(InputArguments) << "RooHist::RooHist: WARNING: Poisson errors of weighted sum of two histograms is not well defined! " << endl
235 << " Summed histogram bins will rounded to nearest integer for Poisson confidence interval calculation" << endl ;
236 }
237
238 // Add histograms, calculate Poisson confidence interval on sum value
239 Int_t i,n=hist1.GetN() ;
240 for(i=0 ; i<n ; i++) {
241 Double_t x1,y1,x2,y2,dx1 ;
242 hist1.GetPoint(i,x1,y1) ;
243 dx1 = hist1.GetErrorX(i) ;
244 hist2.GetPoint(i,x2,y2) ;
245 addBin(x1,roundBin(wgt1*y1+wgt2*y2),2*dx1/xErrorFrac,xErrorFrac) ;
246 }
247
248 } else {
249 // Add histograms with SumW2 errors
250
251 // Add histograms, calculate combined sum-of-weights error
252 Int_t i,n=hist1.GetN() ;
253 for(i=0 ; i<n ; i++) {
254 Double_t x1,y1,x2,y2,dx1,dy1,dy2 ;
255 hist1.GetPoint(i,x1,y1) ;
256 dx1 = hist1.GetErrorX(i) ;
257 dy1 = hist1.GetErrorY(i) ;
258 dy2 = hist2.GetErrorY(i) ;
259 hist2.GetPoint(i,x2,y2) ;
260 Double_t dy = sqrt(wgt1*wgt1*dy1*dy1+wgt2*wgt2*dy2*dy2) ;
261 addBinWithError(x1,wgt1*y1+wgt2*y2,dy,dy,2*dx1/xErrorFrac,xErrorFrac) ;
262 }
263 }
264
265}
266
267
268////////////////////////////////////////////////////////////////////////////////
269/// Create histogram from a pdf or function. Errors are computed based on the fit result provided.
270///
271/// This signature is intended for unfolding/deconvolution scenarios,
272/// where a pdf is constructed as "data minus background" and is thus
273/// intended to be displayed as "data" (or at least data-like).
274/// Usage of this signature is triggered by the draw style "P" in RooAbsReal::plotOn.
275///
276/// More details.
277/// \param[in] f The function to be plotted.
278/// \param[in] x The variable on the x-axis
279/// \param[in] xErrorFrac Size of the errror in x as a fraction of the bin width
280/// \param[in] scaleFactor arbitrary scaling of the y-values
281/// \param[in] normVars variables over which to normalize
282RooHist::RooHist(const RooAbsReal &f, RooAbsRealLValue &x, Double_t xErrorFrac, Double_t scaleFactor, const RooArgSet *normVars, const RooFitResult* fr) :
283 TGraphAsymmErrors(), _nSigma(1), _rawEntries(-1)
284{
285 // grab the function's name and title
286 TString name(f.GetName());
287 SetName(name.Data());
288 TString title(f.GetTitle());
289 SetTitle(title.Data());
290 // append " ( [<funit> ][/ <xunit> ])" to our y-axis label if necessary
291 if(0 != strlen(f.getUnit()) || 0 != strlen(x.getUnit())) {
292 title.Append(" ( ");
293 if(0 != strlen(f.getUnit())) {
294 title.Append(f.getUnit());
295 title.Append(" ");
296 }
297 if(0 != strlen(x.getUnit())) {
298 title.Append("/ ");
299 title.Append(x.getUnit());
300 title.Append(" ");
301 }
302 title.Append(")");
303 }
304 setYAxisLabel(title.Data());
305
306 RooAbsFunc *funcPtr = nullptr;
307 RooAbsFunc *rawPtr = nullptr;
308 funcPtr= f.bindVars(x,normVars,kTRUE);
309
310 // apply a scale factor if necessary
311 if(scaleFactor != 1) {
312 rawPtr= funcPtr;
313 funcPtr= new RooScaledFunc(*rawPtr,scaleFactor);
314 }
315
316 // apply a scale factor if necessary
317 assert(funcPtr);
318
319 // calculate the points to add to our curve
320 int xbins = x.numBins();
321 RooArgSet nset;
322 if(normVars) nset.add(*normVars);
323 for(int i=0; i<xbins; ++i){
324 double xval = x.getBinning().binCenter(i);
325 double xwidth = x.getBinning().binWidth(i);
326 Axis_t xval_ax = xval;
327 double yval = (*funcPtr)(&xval);
328 double yerr = sqrt(yval);
329 if(fr) yerr = f.getPropagatedError(*fr,nset);
330 addBinWithError(xval_ax,yval,yerr,yerr,xwidth,xErrorFrac,false,scaleFactor) ;
331 _entries += yval;
332 }
333 _nominalBinWidth = 1.;
334
335 // cleanup
336 delete funcPtr;
337 if(rawPtr) delete rawPtr;
338}
339
340
341////////////////////////////////////////////////////////////////////////////////
342/// Perform common initialization for all constructors.
343
345{
347 _entries= 0;
348}
349
350
351////////////////////////////////////////////////////////////////////////////////
352/// Return the number of events of the dataset associated with this RooHist.
353/// This is the number of events in the RooHist itself, unless a different
354/// value was specified through setRawEntries()
355
357{
358 return (_rawEntries==-1 ? _entries : _rawEntries) ;
359}
360
361
362////////////////////////////////////////////////////////////////////////////////
363/// Calculate integral of histogram in given range
364
366{
367 Double_t sum(0) ;
368 for (int i=0 ; i<GetN() ; i++) {
369 Double_t x,y ;
370
371 GetPoint(i,x,y) ;
372
373 if (x>=xlo && x<=xhi) {
374 sum += y ;
375 }
376 }
377
378 if (_rawEntries!=-1) {
379 coutW(Plotting) << "RooHist::getFitRangeNEvt() WARNING: The number of normalisation events associated to histogram " << GetName() << " is not equal to number of events in this histogram."
380 << "\n\t\t This is due a cut being applied while plotting the data. Automatic normalisation over a sub-range of a plot variable assumes"
381 << "\n\t\t that the effect of that cut is uniform across the plot, which may be an incorrect assumption. To obtain a correct normalisation, it needs to be passed explicitly:"
382 << "\n\t\t\t data->plotOn(frame01,CutRange(\"SB1\"));"
383 << "\n\t\t\t const double nData = data->sumEntries(\"\", \"SB1\"); //or the cut string such as sumEntries(\"x > 0.\");"
384 << "\n\t\t\t model.plotOn(frame01, RooFit::Normalization(nData, RooAbsReal::NumEvent), ProjectionRange(\"SB1\"));" << endl ;
386 }
387
388 return sum ;
389}
390
391
392
393////////////////////////////////////////////////////////////////////////////////
394/// Return (average) bin width of this RooHist
395
397{
398 return _nominalBinWidth ;
399}
400
401
402
403////////////////////////////////////////////////////////////////////////////////
404/// Return the nearest positive integer to the input value
405/// and print a warning if an adjustment is required.
406
408{
409 if(y < 0) {
410 coutW(Plotting) << fName << "::roundBin: rounding negative bin contents to zero: " << y << endl;
411 return 0;
412 }
413 Int_t n= (Int_t)(y+0.5);
414 if(fabs(y-n)>1e-6) {
415 coutW(Plotting) << fName << "::roundBin: rounding non-integer bin contents: " << y << endl;
416 }
417 return n;
418}
419
420
421
422////////////////////////////////////////////////////////////////////////////////
423/// Add a bin to this histogram with the specified integer bin contents
424/// and using an error bar calculated with Poisson statistics. The bin width
425/// is used to set the relative scale of bins with different widths.
426
427void RooHist::addBin(Axis_t binCenter, Double_t n, Double_t binWidth, Double_t xErrorFrac, Double_t scaleFactor)
428{
429 if (n<0) {
430 coutW(Plotting) << "RooHist::addBin(" << GetName() << ") WARNING: negative entry set to zero when Poisson error bars are requested" << endl ;
431 }
432
433 Double_t scale= 1;
434 if(binWidth > 0) {
435 scale= _nominalBinWidth/binWidth;
436 }
437 _entries+= n;
438 Int_t index= GetN();
439
440 // calculate Poisson errors for this bin
441 Double_t ym,yp,dx(0.5*binWidth);
442
443 if (fabs((double)((n-Int_t(n))>1e-5))) {
444 // need interpolation
445 Double_t ym1(0),yp1(0),ym2(0),yp2(0) ;
446 Int_t n1 = Int_t(n) ;
447 Int_t n2 = n1+1 ;
448 if(!RooHistError::instance().getPoissonInterval(n1,ym1,yp1,_nSigma) ||
449 !RooHistError::instance().getPoissonInterval(n2,ym2,yp2,_nSigma)) {
450 coutE(Plotting) << "RooHist::addBin: unable to add bin with " << n << " events" << endl;
451 }
452 ym = ym1 + (n-n1)*(ym2-ym1) ;
453 yp = yp1 + (n-n1)*(yp2-yp1) ;
454 coutW(Plotting) << "RooHist::addBin(" << GetName()
455 << ") WARNING: non-integer bin entry " << n << " with Poisson errors, interpolating between Poisson errors of adjacent integer" << endl ;
456 } else {
457 // integer case
458 if(!RooHistError::instance().getPoissonInterval(Int_t(n),ym,yp,_nSigma)) {
459 coutE(Plotting) << "RooHist::addBin: unable to add bin with " << n << " events" << endl;
460 return;
461 }
462 }
463
464 SetPoint(index,binCenter,n*scale*scaleFactor);
465 SetPointError(index,dx*xErrorFrac,dx*xErrorFrac,scale*(n-ym)*scaleFactor,scale*(yp-n)*scaleFactor);
466 updateYAxisLimits(scale*yp);
467 updateYAxisLimits(scale*ym);
468}
469
470
471
472////////////////////////////////////////////////////////////////////////////////
473/// Add a bin to this histogram with the specified bin contents
474/// and error. The bin width is used to set the relative scale of
475/// bins with different widths.
476
477void RooHist::addBinWithError(Axis_t binCenter, Double_t n, Double_t elow, Double_t ehigh, Double_t binWidth,
478 Double_t xErrorFrac, Bool_t correctForBinWidth, Double_t scaleFactor)
479{
480 Double_t scale= 1;
481 if(binWidth > 0 && correctForBinWidth) {
482 scale= _nominalBinWidth/binWidth;
483 }
484 _entries+= n;
485 Int_t index= GetN();
486
487 Double_t dx(0.5*binWidth) ;
488 SetPoint(index,binCenter,n*scale*scaleFactor);
489 SetPointError(index,dx*xErrorFrac,dx*xErrorFrac,elow*scale*scaleFactor,ehigh*scale*scaleFactor);
490 updateYAxisLimits(scale*(n-elow));
491 updateYAxisLimits(scale*(n+ehigh));
492}
493
494
495
496
497////////////////////////////////////////////////////////////////////////////////
498/// Add a bin to this histogram with the specified bin contents
499/// and error. The bin width is used to set the relative scale of
500/// bins with different widths.
501
502void RooHist::addBinWithXYError(Axis_t binCenter, Double_t n, Double_t exlow, Double_t exhigh, Double_t eylow, Double_t eyhigh,
503 Double_t scaleFactor)
504{
505 _entries+= n;
506 Int_t index= GetN();
507
508 SetPoint(index,binCenter,n*scaleFactor);
509 SetPointError(index,exlow,exhigh,eylow*scaleFactor,eyhigh*scaleFactor);
510 updateYAxisLimits(scaleFactor*(n-eylow));
511 updateYAxisLimits(scaleFactor*(n+eyhigh));
512}
513
514
515
516
517
518////////////////////////////////////////////////////////////////////////////////
519/// Add a bin to this histogram with the value (n1-n2)/(n1+n2)
520/// using an error bar calculated with Binomial statistics.
521
522void RooHist::addAsymmetryBin(Axis_t binCenter, Int_t n1, Int_t n2, Double_t binWidth, Double_t xErrorFrac, Double_t scaleFactor)
523{
524 Double_t scale= 1;
525 if(binWidth > 0) scale= _nominalBinWidth/binWidth;
526 Int_t index= GetN();
527
528 // calculate Binomial errors for this bin
529 Double_t ym,yp,dx(0.5*binWidth);
530 if(!RooHistError::instance().getBinomialIntervalAsym(n1,n2,ym,yp,_nSigma)) {
531 coutE(Plotting) << "RooHist::addAsymmetryBin: unable to calculate binomial error for bin with " << n1 << "," << n2 << " events" << endl;
532 return;
533 }
534
535 Double_t a= (Double_t)(n1-n2)/(n1+n2);
536 SetPoint(index,binCenter,a*scaleFactor);
537 SetPointError(index,dx*xErrorFrac,dx*xErrorFrac,(a-ym)*scaleFactor,(yp-a)*scaleFactor);
538 updateYAxisLimits(scale*yp);
539 updateYAxisLimits(scale*ym);
540}
541
542
543
544////////////////////////////////////////////////////////////////////////////////
545/// Add a bin to this histogram with the value (n1-n2)/(n1+n2)
546/// using an error bar calculated with Binomial statistics.
547
548void RooHist::addAsymmetryBinWithError(Axis_t binCenter, Double_t n1, Double_t n2, Double_t en1, Double_t en2, Double_t binWidth, Double_t xErrorFrac, Double_t scaleFactor)
549{
550 Double_t scale= 1;
551 if(binWidth > 0) scale= _nominalBinWidth/binWidth;
552 Int_t index= GetN();
553
554 // calculate Binomial errors for this bin
555 Double_t ym,yp,dx(0.5*binWidth);
556 Double_t a= (Double_t)(n1-n2)/(n1+n2);
557
558 Double_t error = 2*sqrt( pow(en1,2)*pow(n2,2) + pow(en2,2)*pow(n1,2) ) / pow(n1+n2,2) ;
559 ym=a-error ;
560 yp=a+error ;
561
562 SetPoint(index,binCenter,a*scaleFactor);
563 SetPointError(index,dx*xErrorFrac,dx*xErrorFrac,(a-ym)*scaleFactor,(yp-a)*scaleFactor);
564 updateYAxisLimits(scale*yp);
565 updateYAxisLimits(scale*ym);
566}
567
568
569
570////////////////////////////////////////////////////////////////////////////////
571/// Add a bin to this histogram with the value n1/(n1+n2)
572/// using an error bar calculated with Binomial statistics.
573
574void RooHist::addEfficiencyBin(Axis_t binCenter, Int_t n1, Int_t n2, Double_t binWidth, Double_t xErrorFrac, Double_t scaleFactor)
575{
576 Double_t scale= 1;
577 if(binWidth > 0) scale= _nominalBinWidth/binWidth;
578 Int_t index= GetN();
579
580 Double_t a= (Double_t)(n1)/(n1+n2);
581
582 // calculate Binomial errors for this bin
583 Double_t ym,yp,dx(0.5*binWidth);
584 if(!RooHistError::instance().getBinomialIntervalEff(n1,n2,ym,yp,_nSigma)) {
585 coutE(Plotting) << "RooHist::addEfficiencyBin: unable to calculate binomial error for bin with " << n1 << "," << n2 << " events" << endl;
586 return;
587 }
588
589 SetPoint(index,binCenter,a*scaleFactor);
590 SetPointError(index,dx*xErrorFrac,dx*xErrorFrac,(a-ym)*scaleFactor,(yp-a)*scaleFactor);
591 updateYAxisLimits(scale*yp);
592 updateYAxisLimits(scale*ym);
593}
594
595
596
597////////////////////////////////////////////////////////////////////////////////
598/// Add a bin to this histogram with the value n1/(n1+n2)
599/// using an error bar calculated with Binomial statistics.
600
601void RooHist::addEfficiencyBinWithError(Axis_t binCenter, Double_t n1, Double_t n2, Double_t en1, Double_t en2, Double_t binWidth, Double_t xErrorFrac, Double_t scaleFactor)
602{
603 Double_t scale= 1;
604 if(binWidth > 0) scale= _nominalBinWidth/binWidth;
605 Int_t index= GetN();
606
607 Double_t a= (Double_t)(n1)/(n1+n2);
608
609 Double_t error = sqrt( pow(en1,2)*pow(n2,2) + pow(en2,2)*pow(n1,2) ) / pow(n1+n2,2) ;
610
611 // calculate Binomial errors for this bin
612 Double_t ym,yp,dx(0.5*binWidth);
613 ym=a-error ;
614 yp=a+error ;
615
616
617 SetPoint(index,binCenter,a*scaleFactor);
618 SetPointError(index,dx*xErrorFrac,dx*xErrorFrac,(a-ym)*scaleFactor,(yp-a)*scaleFactor);
619 updateYAxisLimits(scale*yp);
620 updateYAxisLimits(scale*ym);
621}
622
623
624////////////////////////////////////////////////////////////////////////////////
625/// Return kTRUE if binning of this RooHist is identical to that of 'other'
626
628{
629 // First check if number of bins is the same
630 if (GetN() != other.GetN()) {
631 return kFALSE ;
632 }
633
634 // Next require that all bin centers are the same
635 Int_t i ;
636 for (i=0 ; i<GetN() ; i++) {
637 Double_t x1,x2,y1,y2 ;
638
639 GetPoint(i,x1,y1) ;
640 other.GetPoint(i,x2,y2) ;
641
642 if (fabs(x1-x2)>1e-10) {
643 return kFALSE ;
644 }
645
646 }
647
648 return kTRUE ;
649}
650
651
652
653////////////////////////////////////////////////////////////////////////////////
654/// Return kTRUE if contents of this RooHist is identical within given
655/// relative tolerance to that of 'other'
656
657Bool_t RooHist::isIdentical(const RooHist& other, Double_t tol, bool verbose) const
658{
659 // Make temporary TH1s output of RooHists to perform Kolmogorov test
661 TH1F h_self("h_self","h_self",GetN(),0,1) ;
662 TH1F h_other("h_other","h_other",GetN(),0,1) ;
664
665 for (Int_t i=0 ; i<GetN() ; i++) {
666 h_self.SetBinContent(i+1,GetY()[i]) ;
667 h_other.SetBinContent(i+1,other.GetY()[i]) ;
668 }
669
670 Double_t M = h_self.KolmogorovTest(&h_other,"M") ;
671 if (M>tol) {
672 Double_t kprob = h_self.KolmogorovTest(&h_other) ;
673 if(verbose) cout << "RooHist::isIdentical() tolerance exceeded M=" << M << " (tol=" << tol << "), corresponding prob = " << kprob << endl ;
674 return kFALSE ;
675 }
676
677 return kTRUE ;
678}
679
680
681
682////////////////////////////////////////////////////////////////////////////////
683/// Print info about this histogram to the specified output stream.
684///
685/// Standard: number of entries
686/// Shape: error CL and maximum value
687/// Verbose: print our bin contents and errors
688
689void RooHist::printMultiline(ostream& os, Int_t contents, Bool_t verbose, TString indent) const
690{
691 RooPlotable::printMultiline(os,contents,verbose,indent);
692 os << indent << "--- RooHist ---" << endl;
693 Int_t n= GetN();
694 os << indent << " Contains " << n << " bins" << endl;
695 if(verbose) {
696 os << indent << " Errors calculated at" << _nSigma << "-sigma CL" << endl;
697 os << indent << " Bin Contents:" << endl;
698 for(Int_t i= 0; i < n; i++) {
699 os << indent << setw(3) << i << ") x= " << fX[i];
700 if(fEXhigh[i] > 0 || fEXlow[i] > 0) {
701 os << " +" << fEXhigh[i] << " -" << fEXlow[i];
702 }
703 os << " , y = " << fY[i] << " +" << fEYhigh[i] << " -" << fEYlow[i] << endl;
704 }
705 }
706}
707
708
709
710////////////////////////////////////////////////////////////////////////////////
711/// Print name of RooHist
712
713void RooHist::printName(ostream& os) const
714{
715 os << GetName() ;
716}
717
718
719
720////////////////////////////////////////////////////////////////////////////////
721/// Print title of RooHist
722
723void RooHist::printTitle(ostream& os) const
724{
725 os << GetTitle() ;
726}
727
728
729
730////////////////////////////////////////////////////////////////////////////////
731/// Print class name of RooHist
732
733void RooHist::printClassName(ostream& os) const
734{
735 os << IsA()->GetName() ;
736}
737
738
739std::unique_ptr<RooHist> RooHist::createEmptyResidHist(const RooCurve& curve, bool normalize) const
740{
741 // Copy all non-content properties from hist1
742 auto hist = std::make_unique<RooHist>(_nominalBinWidth) ;
743 if (normalize) {
744 hist->SetName(Form("pull_%s_%s",GetName(),curve.GetName())) ;
745 hist->SetTitle(Form("Pull of %s and %s",GetTitle(),curve.GetTitle())) ;
746 } else {
747 hist->SetName(Form("resid_%s_%s",GetName(),curve.GetName())) ;
748 hist->SetTitle(Form("Residual of %s and %s",GetTitle(),curve.GetTitle())) ;
749 }
750
751 return hist;
752}
753
754
755void RooHist::fillResidHist(RooHist & residHist, const RooCurve& curve,bool normalize, bool useAverage) const
756{
757 // Determine range of curve
758 Double_t xstart,xstop,y ;
759 curve.GetPoint(0,xstart,y) ;
760 curve.GetPoint(curve.GetN()-1,xstop,y) ;
761
762 // Add histograms, calculate Poisson confidence interval on sum value
763 for(Int_t i=0 ; i<GetN() ; i++) {
764 Double_t x,point;
765 GetPoint(i,x,point) ;
766
767 // Only calculate pull for bins inside curve range
768 if (x<xstart || x>xstop) continue ;
769
770 Double_t yy ;
771 if (useAverage) {
772 Double_t exl = GetErrorXlow(i);
773 Double_t exh = GetErrorXhigh(i) ;
774 if (exl<=0 ) exl = GetErrorX(i);
775 if (exh<=0 ) exh = GetErrorX(i);
776 if (exl<=0 ) exl = 0.5*getNominalBinWidth();
777 if (exh<=0 ) exh = 0.5*getNominalBinWidth();
778 yy = point - curve.average(x-exl,x+exh) ;
779 } else {
780 yy = point - curve.interpolate(x) ;
781 }
782
783 Double_t dyl = GetErrorYlow(i) ;
784 Double_t dyh = GetErrorYhigh(i) ;
785 if (normalize) {
786 Double_t norm = (yy>0?dyl:dyh);
787 if (norm==0.) {
788 coutW(Plotting) << "RooHist::makeResisHist(" << GetName() << ") WARNING: point " << i << " has zero error, setting residual to zero" << std::endl;
789 yy=0 ;
790 dyh=0 ;
791 dyl=0 ;
792 } else {
793 yy /= norm;
794 dyh /= norm;
795 dyl /= norm;
796 }
797 }
798 residHist.addBinWithError(x,yy,dyl,dyh);
799 }
800}
801
802
803////////////////////////////////////////////////////////////////////////////////
804/// Create and return RooHist containing residuals w.r.t to given curve.
805/// If normalize is true, the residuals are normalized by the histogram
806/// errors creating a RooHist with pull values
807
808RooHist* RooHist::makeResidHist(const RooCurve& curve, bool normalize, bool useAverage) const
809{
810 RooHist* hist = createEmptyResidHist(curve, normalize).release();
811 fillResidHist(*hist, curve, normalize, useAverage);
812 return hist ;
813}
#define f(i)
Definition RSha256.hxx:104
#define a(i)
Definition RSha256.hxx:99
#define e(i)
Definition RSha256.hxx:103
static const double x2[5]
static const double x1[5]
#define coutW(a)
#define coutE(a)
int Int_t
Definition RtypesCore.h:45
const Bool_t kFALSE
Definition RtypesCore.h:101
double Axis_t
Definition RtypesCore.h:85
double Stat_t
Definition RtypesCore.h:86
const Bool_t kTRUE
Definition RtypesCore.h:100
#define ClassImp(name)
Definition Rtypes.h:364
static void indent(ostringstream &buf, int indent_level)
char name[80]
Definition TGX11.cxx:110
char * Form(const char *fmt,...)
virtual Bool_t add(const RooAbsArg &var, Bool_t silent=kFALSE)
Add the specified argument to list.
Abstract interface for evaluating a real-valued function of one real variable and performing numerica...
Definition RooAbsFunc.h:27
RooAbsRealLValue is the common abstract base class for objects that represent a real value that may a...
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition RooAbsReal.h:64
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:35
A RooCurve is a one-dimensional graphical representation of a real-valued function.
Definition RooCurve.h:32
Double_t average(Double_t lo, Double_t hi) const
Return average curve value in [xFirst,xLast] by integrating curve between points and dividing by xLas...
Definition RooCurve.cxx:606
Double_t interpolate(Double_t x, Double_t tolerance=1e-10) const
Return linearly interpolated value of curve at xvalue.
Definition RooCurve.cxx:692
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
static const RooHistError & instance()
Return a reference to a singleton object that is created the first time this method is called.
A RooHist is a graphical representation of binned data based on the TGraphAsymmErrors class.
Definition RooHist.h:27
void addAsymmetryBinWithError(Axis_t binCenter, Double_t n1, Double_t n2, Double_t en1, Double_t en2, Double_t binWidth=0, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0)
Add a bin to this histogram with the value (n1-n2)/(n1+n2) using an error bar calculated with Binomia...
Definition RooHist.cxx:548
RooHist * makeResidHist(const RooCurve &curve, bool normalize=false, bool useAverage=false) const
Create and return RooHist containing residuals w.r.t to given curve.
Definition RooHist.cxx:808
Double_t _nominalBinWidth
Definition RooHist.h:93
void addEfficiencyBin(Axis_t binCenter, Int_t n1, Int_t n2, Double_t binWidth=0, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0)
Add a bin to this histogram with the value n1/(n1+n2) using an error bar calculated with Binomial sta...
Definition RooHist.cxx:574
void fillResidHist(RooHist &residHist, const RooCurve &curve, bool normalize=false, bool useAverage=false) const
Definition RooHist.cxx:755
Double_t getFitRangeNEvt() const
Return the number of events of the dataset associated with this RooHist.
Definition RooHist.cxx:356
Double_t _rawEntries
Definition RooHist.h:96
virtual void printTitle(std::ostream &os) const
Print title of RooHist.
Definition RooHist.cxx:723
Int_t roundBin(Double_t y)
Return the nearest positive integer to the input value and print a warning if an adjustment is requir...
Definition RooHist.cxx:407
void initialize()
Perform common initialization for all constructors.
Definition RooHist.cxx:344
RooHist()
Default constructor.
Definition RooHist.cxx:50
virtual void printName(std::ostream &os) const
Print name of RooHist.
Definition RooHist.cxx:713
void addBinWithError(Axis_t binCenter, Double_t n, Double_t elow, Double_t ehigh, Double_t binWidth=0, Double_t xErrorFrac=1.0, Bool_t correctForBinWidth=kTRUE, Double_t scaleFactor=1.0)
Add a bin to this histogram with the specified bin contents and error.
Definition RooHist.cxx:477
virtual void printMultiline(std::ostream &os, Int_t content, Bool_t verbose=kFALSE, TString indent="") const
Print info about this histogram to the specified output stream.
Definition RooHist.cxx:689
void addEfficiencyBinWithError(Axis_t binCenter, Double_t n1, Double_t n2, Double_t en1, Double_t en2, Double_t binWidth=0, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0)
Add a bin to this histogram with the value n1/(n1+n2) using an error bar calculated with Binomial sta...
Definition RooHist.cxx:601
Bool_t isIdentical(const RooHist &other, Double_t tol=1e-6, bool verbose=true) const
Return kTRUE if contents of this RooHist is identical within given relative tolerance to that of 'oth...
Definition RooHist.cxx:657
void addBin(Axis_t binCenter, Double_t n, Double_t binWidth=0, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0)
Add a bin to this histogram with the specified integer bin contents and using an error bar calculated...
Definition RooHist.cxx:427
Double_t getNominalBinWidth() const
Definition RooHist.h:70
std::unique_ptr< RooHist > createEmptyResidHist(const RooCurve &curve, bool normalize=false) const
Definition RooHist.cxx:739
virtual void printClassName(std::ostream &os) const
Print class name of RooHist.
Definition RooHist.cxx:733
Double_t _entries
Definition RooHist.h:95
Double_t getFitRangeBinW() const
Return (average) bin width of this RooHist.
Definition RooHist.cxx:396
void addAsymmetryBin(Axis_t binCenter, Int_t n1, Int_t n2, Double_t binWidth=0, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0)
Add a bin to this histogram with the value (n1-n2)/(n1+n2) using an error bar calculated with Binomia...
Definition RooHist.cxx:522
Bool_t hasIdenticalBinning(const RooHist &other) const
Return kTRUE if binning of this RooHist is identical to that of 'other'.
Definition RooHist.cxx:627
void addBinWithXYError(Axis_t binCenter, Double_t n, Double_t exlow, Double_t exhigh, Double_t eylow, Double_t eyhigh, Double_t scaleFactor=1.0)
Add a bin to this histogram with the specified bin contents and error.
Definition RooHist.cxx:502
Double_t _nSigma
Definition RooHist.h:94
void updateYAxisLimits(Double_t y)
Definition RooPlotable.h:33
virtual void printMultiline(std::ostream &os, Int_t contents, Bool_t verbose=kFALSE, TString indent="") const
Print detailed information.
void setYAxisLabel(const char *label)
Definition RooPlotable.h:32
const char * getYAxisLabel() const
Definition RooPlotable.h:31
Lightweight RooAbsFunction implementation that applies a constant scale factor to another RooAbsFunc.
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Definition TAttMarker.h:40
Class to manage histogram axis.
Definition TAxis.h:30
Double_t GetXmax() const
Definition TAxis.h:134
Double_t GetXmin() const
Definition TAxis.h:133
Int_t GetNbins() const
Definition TAxis.h:121
const char * GetTitle() const
Returns title of object.
Definition TAxis.h:129
TGraph with asymmetric error bars.
Double_t * fEXhigh
[fNpoints] array of X high errors
virtual void SetPointError(Double_t exl, Double_t exh, Double_t eyl, Double_t eyh)
Set ex and ey values for point pointed by the mouse.
Double_t GetErrorYhigh(Int_t i) const
Get high error on Y.
Double_t * fEYhigh
[fNpoints] array of Y high errors
Double_t GetErrorYlow(Int_t i) const
Get low error on Y.
Double_t GetErrorXlow(Int_t i) const
Get low error on X.
Double_t * fEYlow
[fNpoints] array of Y low errors
Double_t GetErrorXhigh(Int_t i) const
Get high error on X.
Double_t * fEXlow
[fNpoints] array of X low errors
Double_t GetErrorY(Int_t bin) const
It returns the error along Y at point i.
Double_t GetErrorX(Int_t bin) const
It returns the error along X at point i.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
Definition TGraph.cxx:2298
Double_t * GetY() const
Definition TGraph.h:133
virtual void SetName(const char *name="")
Set graph name.
Definition TGraph.cxx:2337
Int_t GetN() const
Definition TGraph.h:125
virtual void SetTitle(const char *title="")
Change (i.e.
Definition TGraph.cxx:2353
Double_t * fY
[fNpoints] array of Y points
Definition TGraph.h:48
Double_t * fX
[fNpoints] array of X points
Definition TGraph.h:47
virtual Int_t GetPoint(Int_t i, Double_t &x, Double_t &y) const
Get x and y values for point number i.
Definition TGraph.cxx:1601
1-D histogram with a float per channel (see TH1 documentation)}
Definition TH1.h:575
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:58
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Definition TH1.cxx:8971
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
Definition TH1.cxx:8893
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
Definition TH1.cxx:1283
virtual Int_t GetNbinsX() const
Definition TH1.h:296
TAxis * GetYaxis()
Definition TH1.h:321
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition TH1.cxx:9052
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition TH1.cxx:4994
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
Definition TH1.cxx:8993
virtual Double_t KolmogorovTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using Kolmogorov test.
Definition TH1.cxx:8050
TString fName
Definition TNamed.h:32
virtual const char * GetTitle() const
Returns title of object.
Definition TNamed.h:48
virtual const char * GetName() const
Returns name of object.
Definition TNamed.h:47
Basic string class.
Definition TString.h:136
const char * Data() const
Definition TString.h:369
TString & Append(const char *cs)
Definition TString.h:564
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
static uint64_t sum(uint64_t i)
Definition Factory.cxx:2345