from ROOT import TMVA, TFile, TTree, TCut
from subprocess import call
from os.path import isfile
import torch
from torch import nn
'!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Regression')
if not isfile('tmva_reg_example.root'):
call(['curl', '-L', '-O', 'http://root.cern.ch/files/tmva_reg_example.root'])
tree = data.Get('TreeR')
for branch in tree.GetListOfBranches():
name = branch.GetName()
if name != 'fvalue':
dataloader.AddVariable(name)
dataloader.AddTarget('fvalue')
dataloader.AddRegressionTree(tree, 1.0)
dataloader.PrepareTrainingAndTestTree(
TCut(
''),
'nTrain_Regression=4000:SplitMode=Random:NormMode=NumEvents:!V')
model = nn.Sequential()
model.add_module('linear_1', nn.Linear(in_features=2, out_features=64))
model.add_module('relu', nn.Tanh())
model.add_module('linear_2', nn.Linear(in_features=64, out_features=1))
loss = torch.nn.MSELoss()
optimizer = torch.optim.SGD
def train(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler):
trainer = optimizer(model.parameters(), lr=0.01)
schedule, schedulerSteps = scheduler
best_val = None
for epoch in range(num_epochs):
model.train()
running_train_loss = 0.0
running_val_loss = 0.0
for i, (X, y) in enumerate(train_loader):
trainer.zero_grad()
output = model(X)
train_loss = criterion(output, y)
train_loss.backward()
trainer.step()
running_train_loss += train_loss.item()
if i % 32 == 31:
print("[{}, {}] train loss: {:.3f}".format(epoch+1, i+1, running_train_loss / 32))
running_train_loss = 0.0
if schedule:
schedule(optimizer, epoch, schedulerSteps)
model.eval()
with torch.no_grad():
for i, (X, y) in enumerate(val_loader):
output = model(X)
val_loss = criterion(output, y)
running_val_loss += val_loss.item()
curr_val = running_val_loss / len(val_loader)
if save_best:
if best_val==None:
best_val = curr_val
best_val = save_best(model, curr_val, best_val)
print("[{}] val loss: {:.3f}".format(epoch+1, curr_val))
running_val_loss = 0.0
print("Finished Training on {} Epochs!".format(epoch+1))
return model
def predict(model, test_X, batch_size=32):
model.eval()
test_dataset = torch.utils.data.TensorDataset(torch.Tensor(test_X))
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
predictions = []
with torch.no_grad():
for i, data in enumerate(test_loader):
X = data[0]
outputs = model(X)
predictions.append(outputs)
preds = torch.cat(predictions)
return preds.numpy()
load_model_custom_objects = {"optimizer": optimizer, "criterion": loss, "train_func": train, "predict_func": predict}
m = torch.jit.script(model)
torch.jit.save(m, "modelRegression.pt")
print(m)
factory.BookMethod(dataloader, TMVA.Types.kPyTorch, 'PyTorch',
'H:!V:VarTransform=D,G:FilenameModel=modelRegression.pt:FilenameTrainedModel=trainedModelRegression.pt:NumEpochs=20:BatchSize=32')
factory.BookMethod(dataloader, TMVA.Types.kBDT, 'BDTG',
'!H:!V:VarTransform=D,G:NTrees=1000:BoostType=Grad:Shrinkage=0.1:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=4')
factory.TrainAllMethods()
factory.TestAllMethods()
factory.EvaluateAllMethods()
A specialized string object used for TTree selections.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
This is the main MVA steering class.
static void PyInitialize()
Initialize Python interpreter.