28#ifndef ROOT_TMVA_DataLoader
29#define ROOT_TMVA_DataLoader
45 class DataInputHandler;
48 class VariableTransformBase;
105 AddTree(
tree,
"Regression", weight,
"", treetype );
113 const TCut& cut =
"",
135 AddTarget( expression, title, unit, min, max );
158 const TString& otherOpt=
"SplitMode=Random:!V" );
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
#define ClassDef(name, id)
A specialized string object used for TTree selections.
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Service class for 2-D histogram classes.
DataInputHandler * fDataInputHandler
TTree * CreateEventAssignTrees(const TString &name)
create the data assignment tree (for event-wise data assignment by user)
void AddVariablesArray(const TString &expression, int size, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating array of variables in data set info in case input tree provides an array ...
std::vector< TTree * > fTrainAssignTree
void SetBackgroundTree(TTree *background, Double_t weight=1.0)
void AddSignalTree(TTree *signal, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
DataSetInfo & AddDataSet(DataSetInfo &)
void AddSpectator(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
void SetInputTreesFromEventAssignTrees()
assign event-wise local trees to data set
void AddTrainingEvent(const TString &className, const std::vector< Double_t > &event, Double_t weight)
add signal training event
void AddRegressionTree(TTree *tree, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
std::vector< TMVA::VariableTransformBase * > fDefaultTrfs
DataAssignType fDataAssignType
void SetTree(TTree *tree, const TString &className, Double_t weight)
set background tree
void AddSignalTestEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal testing event
std::vector< Float_t > fATreeEvent
DataSetInfo & DefaultDataSetInfo()
default creation
void AddBackgroundTestEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
DataSetManager * fDataSetManager
DataLoader * MakeCopy(TString name)
Copy method use in VI and CV.
void SetSignalWeightExpression(const TString &variable)
void MakeKFoldDataSet(CvSplit &s)
Function required to split the training and testing datasets into a number of folds.
void SetWeightExpression(const TString &variable, const TString &className="")
void AddBackgroundTrainingEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
void RecombineKFoldDataSet(CvSplit &s, Types::ETreeType tt=Types::kTraining)
Recombines the dataset.
DataLoader * VarTransform(TString trafoDefinition)
Transforms the variables and return a new DataLoader with the transformed variables.
void SetBackgroundWeightExpression(const TString &variable)
void AddCut(const TString &cut, const TString &className="")
void AddEvent(const TString &className, Types::ETreeType tt, const std::vector< Double_t > &event, Double_t weight)
add event vector event : the order of values is: variables + targets + spectators
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
DataInputHandler & DataInput()
void AddBackgroundTree(TTree *background, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
DataSetInfo & GetDataSetInfo()
void AddTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
TH2 * GetCorrelationMatrix(const TString &className)
returns the correlation matrix of datasets
friend void DataLoaderCopy(TMVA::DataLoader *des, TMVA::DataLoader *src)
Bool_t UserAssignEvents(UInt_t clIndex)
void AddSignalTrainingEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
void AddRegressionTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
void AddTestEvent(const TString &className, const std::vector< Double_t > &event, Double_t weight)
add signal test event
void SetSignalTree(TTree *signal, Double_t weight=1.0)
void SetInputTrees(const TString &signalFileName, const TString &backgroundFileName, Double_t signalWeight=1.0, Double_t backgroundWeight=1.0)
void AddTree(TTree *tree, const TString &className, Double_t weight=1.0, const TCut &cut="", Types::ETreeType tt=Types::kMaxTreeType)
const DataSetInfo & GetDefaultDataSetInfo()
void SetInputVariables(std::vector< TString > *theVariables)
fill input variables in data set
std::vector< TTree * > fTestAssignTree
Types::EAnalysisType fAnalysisType
void SetCut(const TString &cut, const TString &className="")
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
void PrepareFoldDataSet(CvSplit &s, UInt_t foldNumber, Types::ETreeType tt=Types::kTraining)
Function for assigning the correct folds to the testing or training set.
Class that contains all the data information.
Class that contains all the data information.
A TTree represents a columnar dataset.
create variable transformations
void DataLoaderCopy(TMVA::DataLoader *des, TMVA::DataLoader *src)