1#ifndef TMVA_SOFIE_ROPERATOR_SELU
2#define TMVA_SOFIE_ROPERATOR_SELU
11namespace Experimental{
27 fNX(UTILITY::Clean_name(nameX)),
fNY(UTILITY::Clean_name(nameY)){}
33 std::vector<std::vector<size_t>>
ShapeInference(std::vector<std::vector<size_t>> input){
40 throw std::runtime_error(
"TMVA SOFIE Selu Op Input Tensor is not found in model");
48 OpName =
"op_" + OpName;
50 throw std::runtime_error(
"TMVA SOFIE Transpose Selu called to Generate without being initialized first");
52 std::stringstream out;
57 out <<
"\t" <<
"for (int id = 0; id < " << length <<
" ; id++){\n";
58 out <<
"\t\t" <<
"tensor_" <<
fNY <<
"[id] = 1.0507009873554804934193349852946 * (std::max(float(0.0), tensor_" <<
fNX <<
"[id]) + std::min(0.0, 1.6732632423543772848170429916717 * (std::exp(" <<
"tensor_" <<
fNX <<
"[id]" <<
")-1)));\n";
const ETensorType & GetTensorType(std::string name)
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< std::size_t > shape)
bool CheckIfTensorAlreadyExist(std::string tensor_name)
const std::vector< size_t > & GetTensorShape(std::string name)
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > input)
std::vector< size_t > fShape
std::string Generate(std::string OpName)
ROperator_Selu(std::string nameX, std::string nameY)
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input)
void Initialize(RModel &model)
create variable transformations