Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
MethodMLP.h
Go to the documentation of this file.
1// @(#)root/tmva $Id$
2// Author: Krzysztof Danielowski, Andreas Hoecker, Matt Jachowski, Kamil Kraszewski, Maciej Kruk, Peter Speckmayer, Joerg Stelzer, Eckhard von Toerne, Jan Therhaag, Jiahang Zhong
3
4/**********************************************************************************
5 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6 * Package: TMVA *
7 * Class : MethodMLP *
8 * Web : http://tmva.sourceforge.net *
9 * *
10 * Description: *
11 * ANN Multilayer Perceptron class for the discrimination of signal *
12 * from background. BFGS implementation based on TMultiLayerPerceptron *
13 * class from ROOT (http://root.cern.ch). *
14 * *
15 * Authors (alphabetical): *
16 * Krzysztof Danielowski <danielow@cern.ch> - IFJ & AGH, Poland *
17 * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
18 * Matt Jachowski <jachowski@stanford.edu> - Stanford University, USA *
19 * Kamil Kraszewski <kalq@cern.ch> - IFJ & UJ, Poland *
20 * Maciej Kruk <mkruk@cern.ch> - IFJ & AGH, Poland *
21 * Peter Speckmayer <peter.speckmayer@cern.ch> - CERN, Switzerland *
22 * Joerg Stelzer <stelzer@cern.ch> - DESY, Germany *
23 * Jan Therhaag <Jan.Therhaag@cern.ch> - U of Bonn, Germany *
24 * Eckhard v. Toerne <evt@uni-bonn.de> - U of Bonn, Germany *
25 * Jiahang Zhong <Jiahang.Zhong@cern.ch> - Academia Sinica, Taipei *
26 * *
27 * Copyright (c) 2005-2011: *
28 * CERN, Switzerland *
29 * U. of Victoria, Canada *
30 * MPI-K Heidelberg, Germany *
31 * U. of Bonn, Germany *
32 * *
33 * Redistribution and use in source and binary forms, with or without *
34 * modification, are permitted according to the terms listed in LICENSE *
35 * (http://tmva.sourceforge.net/LICENSE) *
36 **********************************************************************************/
37
38#ifndef ROOT_TMVA_MethodMLP
39#define ROOT_TMVA_MethodMLP
40
41//////////////////////////////////////////////////////////////////////////
42// //
43// MethodMLP //
44// //
45// Multilayer Perceptron built off of MethodANNBase //
46// //
47//////////////////////////////////////////////////////////////////////////
48
49#include <vector>
50#include <utility>
51#include "TString.h"
52#include "TTree.h"
53#include "TRandom3.h"
54#include "TH1F.h"
55#include "TMatrixDfwd.h"
56
57#include "TMVA/IFitterTarget.h"
58#include "TMVA/MethodBase.h"
59#include "TMVA/MethodANNBase.h"
60#include "TMVA/TNeuron.h"
61#include "TMVA/TActivation.h"
63
64#define MethodMLP_UseMinuit__
65#undef MethodMLP_UseMinuit__
66
67namespace TMVA {
68
69 class MethodMLP : public MethodANNBase, public IFitterTarget, public ConvergenceTest {
70
71 public:
72
73 // standard constructors
74 MethodMLP( const TString& jobName,
75 const TString& methodTitle,
76 DataSetInfo& theData,
77 const TString& theOption );
78
79 MethodMLP( DataSetInfo& theData,
80 const TString& theWeightFile );
81
82 virtual ~MethodMLP();
83
84 virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets );
85
86 void Train();
87 // for GA
88 Double_t ComputeEstimator ( std::vector<Double_t>& parameters );
89 Double_t EstimatorFunction( std::vector<Double_t>& parameters );
90
93
95 Double_t GetMvaValue( Double_t* err=0, Double_t* errUpper=0 );
96
97 protected:
98
99 // make ROOT-independent C++ class for classifier response (classifier-specific implementation)
100 void MakeClassSpecific( std::ostream&, const TString& ) const;
101
102 // get help message text
103 void GetHelpMessage() const;
104
105
106 private:
107
108 // the option handling methods
109 void DeclareOptions();
110 void ProcessOptions();
111
112 // general helper functions
113 void Train( Int_t nEpochs );
114 void Init();
115 void InitializeLearningRates(); // although this is only needed by backprop
116
117 // used as a measure of success in all minimization techniques
119
120 // BFGS functions
121 void BFGSMinimize( Int_t nEpochs );
122 void SetGammaDelta( TMatrixD &Gamma, TMatrixD &Delta, std::vector<Double_t> &Buffer );
123 void SteepestDir( TMatrixD &Dir );
124 Bool_t GetHessian( TMatrixD &Hessian, TMatrixD &Gamma, TMatrixD &Delta );
125 void SetDir( TMatrixD &Hessian, TMatrixD &Dir );
126 Double_t DerivDir( TMatrixD &Dir );
127 Bool_t LineSearch( TMatrixD &Dir, std::vector<Double_t> &Buffer, Double_t* dError=0 ); //zjh
128 void ComputeDEDw();
129 void SimulateEvent( const Event* ev );
130 void SetDirWeights( std::vector<Double_t> &Origin, TMatrixD &Dir, Double_t alpha );
132 Double_t GetMSEErr( const Event* ev, UInt_t index = 0 ); //zjh
133 Double_t GetCEErr( const Event* ev, UInt_t index = 0 ); //zjh
134
135 // backpropagation functions
136 void BackPropagationMinimize( Int_t nEpochs );
137 void TrainOneEpoch();
138 void Shuffle( Int_t* index, Int_t n );
139 void DecaySynapseWeights(Bool_t lateEpoch );
140 void TrainOneEvent( Int_t ievt);
141 Double_t GetDesiredOutput( const Event* ev );
142 void UpdateNetwork( Double_t desired, Double_t eventWeight=1.0 );
143 void UpdateNetwork(const std::vector<Float_t>& desired, Double_t eventWeight=1.0);
145 void UpdateSynapses();
147
148 // faster backpropagation
149 void TrainOneEventFast( Int_t ievt, Float_t*& branchVar, Int_t& type );
150
151 // genetic algorithm functions
152 void GeneticMinimize();
153
154
155#ifdef MethodMLP_UseMinuit__
156 // minuit functions -- commented out because they rely on a static pointer
157 void MinuitMinimize();
158 static MethodMLP* GetThisPtr();
159 static void IFCN( Int_t& npars, Double_t* grad, Double_t &f, Double_t* fitPars, Int_t ifl );
160 void FCN( Int_t& npars, Double_t* grad, Double_t &f, Double_t* fitPars, Int_t ifl );
161#endif
162
163 // general
164 bool fUseRegulator; // zjh
165 bool fCalculateErrors; // compute inverse hessian matrix at the end of the training
167 std::vector<Double_t> fPriorDev; // zjh
168 void GetApproxInvHessian ( TMatrixD& InvHessian, bool regulate=true ); //rank-1 approximation, neglect 2nd derivatives. //zjh
169 void UpdateRegulators(); // zjh
170 void UpdatePriors(); // zjh
172
173 ETrainingMethod fTrainingMethod; // method of training, BP or GA
174 TString fTrainMethodS; // training method option param
175
176 Float_t fSamplingFraction; // fraction of events which is sampled for training
177 Float_t fSamplingEpoch; // fraction of epochs where sampling is used
178 Float_t fSamplingWeight; // changing factor for event weights when sampling is turned on
179 Bool_t fSamplingTraining; // The training sample is sampled
180 Bool_t fSamplingTesting; // The testing sample is sampled
181
182 // BFGS variables
183 Double_t fLastAlpha; // line search variable
184 Double_t fTau; // line search variable
185 Int_t fResetStep; // reset time (how often we clear hessian matrix)
186
187 // back propagation variable
188 Double_t fLearnRate; // learning rate for synapse weight adjustments
189 Double_t fDecayRate; // decay rate for above learning rate
190 EBPTrainingMode fBPMode; // backprop learning mode (sequential or batch)
191 TString fBpModeS; // backprop learning mode option string (sequential or batch)
192 Int_t fBatchSize; // batch size, only matters if in batch learning mode
193 Int_t fTestRate; // test for overtraining performed at each #th epochs
194 Bool_t fEpochMon; // create and fill epoch-wise monitoring histograms (makes outputfile big!)
195
196 // genetic algorithm variables
197 Int_t fGA_nsteps; // GA settings: number of steps
198 Int_t fGA_preCalc; // GA settings: number of pre-calc steps
199 Int_t fGA_SC_steps; // GA settings: SC_steps
200 Int_t fGA_SC_rate; // GA settings: SC_rate
201 Double_t fGA_SC_factor; // GA settings: SC_factor
202
203 // regression, storage of deviations
204 std::vector<std::pair<Float_t,Float_t> >* fDeviationsFromTargets; // deviation from the targets, event weight
205
206 Float_t fWeightRange; // suppress outliers for the estimator calculation
207
208#ifdef MethodMLP_UseMinuit__
209 // minuit variables -- commented out because they rely on a static pointer
210 Int_t fNumberOfWeights; // Minuit: number of weights
211 static MethodMLP* fgThis; // Minuit: this pointer
212#endif
213
214 // debugging flags
215 static const Int_t fgPRINT_ESTIMATOR_INC = 10; // debug flags
216 static const Bool_t fgPRINT_SEQ = kFALSE; // debug flags
217 static const Bool_t fgPRINT_BATCH = kFALSE; // debug flags
218
219 ClassDef(MethodMLP,0); // Multi-layer perceptron implemented specifically for TMVA
220 };
221
222} // namespace TMVA
223
224#endif
#define f(i)
Definition RSha256.hxx:104
unsigned int UInt_t
Definition RtypesCore.h:46
const Bool_t kFALSE
Definition RtypesCore.h:101
bool Bool_t
Definition RtypesCore.h:63
double Double_t
Definition RtypesCore.h:59
float Float_t
Definition RtypesCore.h:57
#define ClassDef(name, id)
Definition Rtypes.h:325
int type
Definition TGX11.cxx:121
Check for convergence.
Class that contains all the data information.
Definition DataSetInfo.h:62
Interface for a fitter 'target'.
Base class for all TMVA methods using artificial neural networks.
Multilayer Perceptron class built off of MethodANNBase.
Definition MethodMLP.h:69
bool fCalculateErrors
Definition MethodMLP.h:165
std::vector< std::pair< Float_t, Float_t > > * fDeviationsFromTargets
Definition MethodMLP.h:204
Bool_t LineSearch(TMatrixD &Dir, std::vector< Double_t > &Buffer, Double_t *dError=0)
Double_t fTau
Definition MethodMLP.h:184
Float_t fWeightRange
Definition MethodMLP.h:206
Float_t fSamplingWeight
Definition MethodMLP.h:178
void GetHelpMessage() const
get help message text
void BackPropagationMinimize(Int_t nEpochs)
minimize estimator / train network with back propagation algorithm
Double_t GetMSEErr(const Event *ev, UInt_t index=0)
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
get the mva value generated by the NN
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
void AdjustSynapseWeights()
just adjust the synapse weights (should be called in batch mode)
std::vector< Double_t > fPriorDev
Definition MethodMLP.h:167
bool HasInverseHessian()
Definition MethodMLP.h:94
TString fBpModeS
Definition MethodMLP.h:191
void SteepestDir(TMatrixD &Dir)
void TrainOneEpoch()
train network over a single epoch/cycle of events
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
MLP can handle classification with 2 classes and regression with one regression-target.
TString fTrainMethodS
Definition MethodMLP.h:174
Double_t fPrior
Definition MethodMLP.h:166
Bool_t GetHessian(TMatrixD &Hessian, TMatrixD &Gamma, TMatrixD &Delta)
Double_t ComputeEstimator(std::vector< Double_t > &parameters)
this function is called by GeneticANN for GA optimization
static const Bool_t fgPRINT_BATCH
Definition MethodMLP.h:217
void InitializeLearningRates()
initialize learning rates of synapses, used only by back propagation
void CalculateNeuronDeltas()
have each neuron calculate its delta by back propagation
Double_t fDecayRate
Definition MethodMLP.h:189
ETrainingMethod fTrainingMethod
Definition MethodMLP.h:173
EBPTrainingMode fBPMode
Definition MethodMLP.h:190
Double_t DerivDir(TMatrixD &Dir)
Double_t fGA_SC_factor
Definition MethodMLP.h:201
Double_t GetCEErr(const Event *ev, UInt_t index=0)
virtual ~MethodMLP()
destructor nothing to be done
void SetDir(TMatrixD &Hessian, TMatrixD &Dir)
void Shuffle(Int_t *index, Int_t n)
Input:
Bool_t fSamplingTraining
Definition MethodMLP.h:179
void SimulateEvent(const Event *ev)
void SetDirWeights(std::vector< Double_t > &Origin, TMatrixD &Dir, Double_t alpha)
void SetGammaDelta(TMatrixD &Gamma, TMatrixD &Delta, std::vector< Double_t > &Buffer)
Double_t EstimatorFunction(std::vector< Double_t > &parameters)
interface to the estimate
Double_t fLearnRate
Definition MethodMLP.h:188
void GetApproxInvHessian(TMatrixD &InvHessian, bool regulate=true)
void BFGSMinimize(Int_t nEpochs)
train network with BFGS algorithm
void UpdateSynapses()
update synapse error fields and adjust the weights (if in sequential mode)
void Init()
default initializations
static const Int_t fgPRINT_ESTIMATOR_INC
Definition MethodMLP.h:215
void ProcessOptions()
process user options
Float_t fSamplingFraction
Definition MethodMLP.h:176
void TrainOneEvent(Int_t ievt)
train network over a single event this uses the new event model
Double_t GetDesiredOutput(const Event *ev)
get the desired output of this event
void GeneticMinimize()
create genetics class similar to GeneticCut give it vector of parameter ranges (parameters = weights)...
Bool_t fSamplingTesting
Definition MethodMLP.h:180
Double_t GetError()
Double_t fLastAlpha
Definition MethodMLP.h:183
Float_t fSamplingEpoch
Definition MethodMLP.h:177
void DecaySynapseWeights(Bool_t lateEpoch)
decay synapse weights in last 10 epochs, lower learning rate even more to find a good minimum
void TrainOneEventFast(Int_t ievt, Float_t *&branchVar, Int_t &type)
fast per-event training
void UpdateNetwork(Double_t desired, Double_t eventWeight=1.0)
update the network based on how closely the output matched the desired output
void UpdateRegulators()
void DeclareOptions()
define the options (their key words) that can be set in the option string
Double_t CalculateEstimator(Types::ETreeType treeType=Types::kTraining, Int_t iEpoch=-1)
calculate the estimator that training is attempting to minimize
static const Bool_t fgPRINT_SEQ
Definition MethodMLP.h:216
@ kTraining
Definition Types.h:143
Basic string class.
Definition TString.h:136
const Int_t n
Definition legend1.C:16
create variable transformations