38#ifndef ROOT_TMVA_MethodMLP
39#define ROOT_TMVA_MethodMLP
64#define MethodMLP_UseMinuit__
65#undef MethodMLP_UseMinuit__
155#ifdef MethodMLP_UseMinuit__
157 void MinuitMinimize();
208#ifdef MethodMLP_UseMinuit__
210 Int_t fNumberOfWeights;
#define ClassDef(name, id)
Class that contains all the data information.
Interface for a fitter 'target'.
Base class for all TMVA methods using artificial neural networks.
Multilayer Perceptron class built off of MethodANNBase.
std::vector< std::pair< Float_t, Float_t > > * fDeviationsFromTargets
Bool_t LineSearch(TMatrixD &Dir, std::vector< Double_t > &Buffer, Double_t *dError=0)
void GetHelpMessage() const
get help message text
void BackPropagationMinimize(Int_t nEpochs)
minimize estimator / train network with back propagation algorithm
Double_t GetMSEErr(const Event *ev, UInt_t index=0)
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
get the mva value generated by the NN
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
void AdjustSynapseWeights()
just adjust the synapse weights (should be called in batch mode)
std::vector< Double_t > fPriorDev
void SteepestDir(TMatrixD &Dir)
void TrainOneEpoch()
train network over a single epoch/cycle of events
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
MLP can handle classification with 2 classes and regression with one regression-target.
Bool_t GetHessian(TMatrixD &Hessian, TMatrixD &Gamma, TMatrixD &Delta)
Double_t ComputeEstimator(std::vector< Double_t > ¶meters)
this function is called by GeneticANN for GA optimization
static const Bool_t fgPRINT_BATCH
void InitializeLearningRates()
initialize learning rates of synapses, used only by back propagation
void CalculateNeuronDeltas()
have each neuron calculate its delta by back propagation
ETrainingMethod fTrainingMethod
Double_t DerivDir(TMatrixD &Dir)
Double_t GetCEErr(const Event *ev, UInt_t index=0)
virtual ~MethodMLP()
destructor nothing to be done
void SetDir(TMatrixD &Hessian, TMatrixD &Dir)
void Shuffle(Int_t *index, Int_t n)
Input:
void SimulateEvent(const Event *ev)
void SetDirWeights(std::vector< Double_t > &Origin, TMatrixD &Dir, Double_t alpha)
void SetGammaDelta(TMatrixD &Gamma, TMatrixD &Delta, std::vector< Double_t > &Buffer)
Double_t EstimatorFunction(std::vector< Double_t > ¶meters)
interface to the estimate
void GetApproxInvHessian(TMatrixD &InvHessian, bool regulate=true)
void BFGSMinimize(Int_t nEpochs)
train network with BFGS algorithm
void UpdateSynapses()
update synapse error fields and adjust the weights (if in sequential mode)
void Init()
default initializations
static const Int_t fgPRINT_ESTIMATOR_INC
void ProcessOptions()
process user options
Float_t fSamplingFraction
void TrainOneEvent(Int_t ievt)
train network over a single event this uses the new event model
Double_t GetDesiredOutput(const Event *ev)
get the desired output of this event
void GeneticMinimize()
create genetics class similar to GeneticCut give it vector of parameter ranges (parameters = weights)...
void DecaySynapseWeights(Bool_t lateEpoch)
decay synapse weights in last 10 epochs, lower learning rate even more to find a good minimum
void TrainOneEventFast(Int_t ievt, Float_t *&branchVar, Int_t &type)
fast per-event training
void UpdateNetwork(Double_t desired, Double_t eventWeight=1.0)
update the network based on how closely the output matched the desired output
void DeclareOptions()
define the options (their key words) that can be set in the option string
Double_t CalculateEstimator(Types::ETreeType treeType=Types::kTraining, Int_t iEpoch=-1)
calculate the estimator that training is attempting to minimize
static const Bool_t fgPRINT_SEQ
create variable transformations