102 if(DataInfo().GetNTargets()!=0) fNRegOut = DataInfo().
GetNTargets();
105 fLDCoeff =
new vector< vector< Double_t >* >(fNRegOut);
106 for (
Int_t iout = 0; iout<fNRegOut; iout++){
107 (*fLDCoeff)[iout] =
new std::vector<Double_t>( GetNvar()+1 );
111 SetSignalReferenceCut( 0.0 );
119 if (fSumMatx) {
delete fSumMatx; fSumMatx = 0; }
120 if (fSumValMatx) {
delete fSumValMatx; fSumValMatx = 0; }
121 if (fCoeffMatx) {
delete fCoeffMatx; fCoeffMatx = 0; }
123 for (vector< vector< Double_t >* >::iterator vi=fLDCoeff->begin(); vi!=fLDCoeff->end(); ++vi){
124 if (*vi) {
delete *vi; *vi = 0; }
126 delete fLDCoeff; fLDCoeff = 0;
137 Log() <<
"regression with " << numberTargets <<
" targets.";
168 const Event* ev = GetEvent();
170 if (fRegressionReturnVal == NULL) fRegressionReturnVal =
new vector< Float_t >();
171 fRegressionReturnVal->resize( fNRegOut );
173 for (
Int_t iout = 0; iout<fNRegOut; iout++) {
174 (*fRegressionReturnVal)[iout] = (*(*fLDCoeff)[iout])[0] ;
177 for (std::vector<Float_t>::const_iterator it = ev->
GetValues().begin();it!=ev->
GetValues().end();++it){
178 (*fRegressionReturnVal)[iout] += (*(*fLDCoeff)[iout])[++icoeff] * (*it);
183 NoErrorCalc(err, errUpper);
185 return (*fRegressionReturnVal)[0];
193 const Event* ev = GetEvent();
195 if (fRegressionReturnVal == NULL) fRegressionReturnVal =
new vector< Float_t >();
196 fRegressionReturnVal->resize( fNRegOut );
198 for (
Int_t iout = 0; iout<fNRegOut; iout++) {
199 (*fRegressionReturnVal)[iout] = (*(*fLDCoeff)[iout])[0] ;
202 for (std::vector<Float_t>::const_iterator it = ev->
GetValues().begin();it!=ev->
GetValues().end();++it){
203 (*fRegressionReturnVal)[iout] += (*(*fLDCoeff)[iout])[++icoeff] * (*it);
209 for (
Int_t iout = 0; iout<fNRegOut; iout++) evT->
SetTarget(iout,(*fRegressionReturnVal)[iout]);
211 const Event* evT2 = GetTransformationHandler().InverseTransform( evT );
212 fRegressionReturnVal->clear();
213 for (
Int_t iout = 0; iout<fNRegOut; iout++) fRegressionReturnVal->push_back(evT2->
GetTarget(iout));
216 return (*fRegressionReturnVal);
224 fSumMatx =
new TMatrixD( GetNvar()+1, GetNvar()+1 );
225 fSumValMatx =
new TMatrixD( GetNvar()+1, fNRegOut );
226 fCoeffMatx =
new TMatrixD( GetNvar()+1, fNRegOut );
236 const UInt_t nvar = DataInfo().GetNVariables();
238 for (
UInt_t ivar = 0; ivar<=nvar; ivar++){
239 for (
UInt_t jvar = 0; jvar<=nvar; jvar++) (*fSumMatx)( ivar, jvar ) = 0;
243 Long64_t nevts = Data()->GetNEvents();
244 for (
Int_t ievt=0; ievt<nevts; ievt++) {
245 const Event * ev = GetEvent(ievt);
248 if (IgnoreEventsWithNegWeightsInTraining() && weight <= 0)
continue;
251 (*fSumMatx)( 0, 0 ) += weight;
254 for (
UInt_t ivar=0; ivar<nvar; ivar++) {
255 (*fSumMatx)( ivar+1, 0 ) += ev->
GetValue( ivar ) * weight;
256 (*fSumMatx)( 0, ivar+1 ) += ev->
GetValue( ivar ) * weight;
260 for (
UInt_t ivar=0; ivar<nvar; ivar++){
261 for (
UInt_t jvar=0; jvar<nvar; jvar++){
262 (*fSumMatx)( ivar+1, jvar+1 ) += ev->
GetValue( ivar ) * ev->
GetValue( jvar ) * weight;
273 const UInt_t nvar = DataInfo().GetNVariables();
275 for (
Int_t ivar = 0; ivar<fNRegOut; ivar++){
276 for (
UInt_t jvar = 0; jvar<=nvar; jvar++){
277 (*fSumValMatx)(jvar,ivar) = 0;
282 for (
Int_t ievt=0; ievt<Data()->GetNEvents(); ievt++) {
285 const Event* ev = GetEvent(ievt);
289 if (IgnoreEventsWithNegWeightsInTraining() && weight <= 0)
continue;
291 for (
Int_t ivar=0; ivar<fNRegOut; ivar++) {
295 if (!DoRegression()){
296 val *= DataInfo().IsSignal(ev);
300 (*fSumValMatx)( 0,ivar ) += val;
301 for (
UInt_t jvar=0; jvar<nvar; jvar++) {
302 (*fSumValMatx)(jvar+1,ivar ) += ev->
GetValue(jvar) * val;
313 const UInt_t nvar = DataInfo().GetNVariables();
315 for (
Int_t ivar = 0; ivar<fNRegOut; ivar++){
318 Log() << kWARNING <<
"<GetCoeff> matrix is almost singular with determinant="
320 <<
" did you use the variables that are linear combinations or highly correlated?"
324 Log() << kFATAL <<
"<GetCoeff> matrix is singular with determinant="
326 <<
" did you use the variables that are linear combinations?"
331 fCoeffMatx =
new TMatrixD( invSum * (*fSumValMatx));
332 for (
UInt_t jvar = 0; jvar<nvar+1; jvar++) {
333 (*(*fLDCoeff)[ivar])[jvar] = (*fCoeffMatx)(jvar, ivar );
335 if (!DoRegression()) {
336 (*(*fLDCoeff)[ivar])[0]=0.0;
337 for (
UInt_t jvar = 1; jvar<nvar+1; jvar++){
338 (*(*fLDCoeff)[ivar])[0]+=(*fCoeffMatx)(jvar,ivar)*(*fSumMatx)(0,jvar)/(*fSumMatx)( 0, 0 );
340 (*(*fLDCoeff)[ivar])[0]/=-2.0;
351 for (
Int_t iout=0; iout<fNRegOut; iout++){
352 for (
UInt_t icoeff=0; icoeff<GetNvar()+1; icoeff++){
353 istr >> (*(*fLDCoeff)[iout])[icoeff];
367 for (
Int_t iout=0; iout<fNRegOut; iout++) {
368 for (
UInt_t icoeff=0; icoeff<GetNvar()+1; icoeff++) {
372 gTools().
AddAttr( coeffxml,
"Value", (*(*fLDCoeff)[iout])[icoeff] );
387 if (ncoeff != GetNvar()+1) Log() << kFATAL <<
"Mismatch in number of output variables/coefficients: "
388 << ncoeff <<
" != " << GetNvar()+1 <<
Endl;
392 for (vector< vector< Double_t >* >::iterator vi=fLDCoeff->begin(); vi!=fLDCoeff->end(); ++vi){
393 if (*vi) {
delete *vi; *vi = 0; }
395 delete fLDCoeff; fLDCoeff = 0;
397 fLDCoeff =
new vector< vector< Double_t >* >(fNRegOut);
398 for (
Int_t ivar = 0; ivar<fNRegOut; ivar++) (*fLDCoeff)[ivar] = new std::vector<Double_t>( ncoeff );
408 (*(*fLDCoeff)[iout])[icoeff] = coeff;
419 fout <<
" std::vector<double> fLDCoefficients;" << std::endl;
420 fout <<
"};" << std::endl;
421 fout <<
"" << std::endl;
422 fout <<
"inline void " << className <<
"::Initialize() " << std::endl;
423 fout <<
"{" << std::endl;
424 for (
UInt_t ivar=0; ivar<GetNvar()+1; ivar++) {
425 Int_t dp = fout.precision();
426 fout <<
" fLDCoefficients.push_back( "
427 << std::setprecision(12) << (*(*fLDCoeff)[0])[ivar]
428 << std::setprecision(dp) <<
" );" << std::endl;
431 fout <<
" // sanity check" << std::endl;
432 fout <<
" if (fLDCoefficients.size() != fNvars+1) {" << std::endl;
433 fout <<
" std::cout << \"Problem in class \\\"\" << fClassName << \"\\\"::Initialize: mismatch in number of input values\"" << std::endl;
434 fout <<
" << fLDCoefficients.size() << \" != \" << fNvars+1 << std::endl;" << std::endl;
435 fout <<
" fStatusIsClean = false;" << std::endl;
436 fout <<
" } " << std::endl;
437 fout <<
"}" << std::endl;
439 fout <<
"inline double " << className <<
"::GetMvaValue__( const std::vector<double>& inputValues ) const" << std::endl;
440 fout <<
"{" << std::endl;
441 fout <<
" double retval = fLDCoefficients[0];" << std::endl;
442 fout <<
" for (size_t ivar = 1; ivar < fNvars+1; ivar++) {" << std::endl;
443 fout <<
" retval += fLDCoefficients[ivar]*inputValues[ivar-1];" << std::endl;
444 fout <<
" }" << std::endl;
446 fout <<
" return retval;" << std::endl;
447 fout <<
"}" << std::endl;
449 fout <<
"// Clean up" << std::endl;
450 fout <<
"inline void " << className <<
"::Clear() " << std::endl;
451 fout <<
"{" << std::endl;
452 fout <<
" // clear coefficients" << std::endl;
453 fout <<
" fLDCoefficients.clear(); " << std::endl;
454 fout <<
"}" << std::endl;
462 fRanking =
new Ranking( GetName(),
"Discr. power" );
464 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
465 fRanking->AddRank(
Rank( GetInputLabel(ivar),
TMath::Abs((* (*fLDCoeff)[0])[ivar+1] )) );
484 if (HasTrainingTree()) InitMatrices();
492 Log() << kHEADER <<
"Results for LD coefficients:" <<
Endl;
494 if (GetTransformationHandler().GetTransformationList().GetSize() != 0) {
495 Log() << kINFO <<
"NOTE: The coefficients must be applied to TRANFORMED variables" <<
Endl;
496 Log() << kINFO <<
" List of the transformation: " <<
Endl;
497 TListIter trIt(&GetTransformationHandler().GetTransformationList());
499 Log() << kINFO <<
" -- " << trf->GetName() <<
Endl;
502 std::vector<TString> vars;
503 std::vector<Double_t> coeffs;
504 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
505 vars .push_back( GetInputLabel(ivar) );
506 coeffs.push_back( (* (*fLDCoeff)[0])[ivar+1] );
508 vars .push_back(
"(offset)" );
509 coeffs.push_back((* (*fLDCoeff)[0])[0] );
511 if (IsNormalised()) {
512 Log() << kINFO <<
"NOTE: You have chosen to use the \"Normalise\" booking option. Hence, the" <<
Endl;
513 Log() << kINFO <<
" coefficients must be applied to NORMALISED (') variables as follows:" <<
Endl;
515 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++)
if (GetInputLabel(ivar).Length() > maxL) maxL = GetInputLabel(ivar).Length();
518 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
520 << std::setw(maxL+9) <<
TString(
"[") + GetInputLabel(ivar) +
"]' = 2*("
521 << std::setw(maxL+2) <<
TString(
"[") + GetInputLabel(ivar) +
"]"
522 << std::setw(3) << (GetXmin(ivar) > 0 ?
" - " :
" + ")
523 << std::setw(6) <<
TMath::Abs(GetXmin(ivar)) << std::setw(3) <<
")/"
524 << std::setw(6) << (GetXmax(ivar) - GetXmin(ivar) )
525 << std::setw(3) <<
" - 1"
528 Log() << kINFO <<
"The TMVA Reader will properly account for this normalisation, but if the" <<
Endl;
529 Log() << kINFO <<
"LD classifier is applied outside the Reader, the transformation must be" <<
Endl;
530 Log() << kINFO <<
"implemented -- or the \"Normalise\" option is removed and LD retrained." <<
Endl;
531 Log() << kINFO <<
Endl;
546 Log() <<
"Linear discriminants select events by distinguishing the mean " <<
Endl;
547 Log() <<
"values of the signal and background distributions in a trans- " <<
Endl;
548 Log() <<
"formed variable space where linear correlations are removed." <<
Endl;
549 Log() <<
"The LD implementation here is equivalent to the \"Fisher\" discriminant" <<
Endl;
550 Log() <<
"for classification, but also provides linear regression." <<
Endl;
552 Log() <<
" (More precisely: the \"linear discriminator\" determines" <<
Endl;
553 Log() <<
" an axis in the (correlated) hyperspace of the input " <<
Endl;
554 Log() <<
" variables such that, when projecting the output classes " <<
Endl;
555 Log() <<
" (signal and background) upon this axis, they are pushed " <<
Endl;
556 Log() <<
" as far as possible away from each other, while events" <<
Endl;
557 Log() <<
" of a same class are confined in a close vicinity. The " <<
Endl;
558 Log() <<
" linearity property of this classifier is reflected in the " <<
Endl;
559 Log() <<
" metric with which \"far apart\" and \"close vicinity\" are " <<
Endl;
560 Log() <<
" determined: the covariance matrix of the discriminating" <<
Endl;
561 Log() <<
" variable space.)" <<
Endl;
565 Log() <<
"Optimal performance for the linear discriminant is obtained for " <<
Endl;
566 Log() <<
"linearly correlated Gaussian-distributed variables. Any deviation" <<
Endl;
567 Log() <<
"from this ideal reduces the achievable separation power. In " <<
Endl;
568 Log() <<
"particular, no discrimination at all is achieved for a variable" <<
Endl;
569 Log() <<
"that has the same sample mean for signal and background, even if " <<
Endl;
570 Log() <<
"the shapes of the distributions are very different. Thus, the linear " <<
Endl;
571 Log() <<
"discriminant often benefits from a suitable transformation of the " <<
Endl;
572 Log() <<
"input variables. For example, if a variable x in [-1,1] has a " <<
Endl;
573 Log() <<
"a parabolic signal distributions, and a uniform background" <<
Endl;
574 Log() <<
"distributions, their mean value is zero in both cases, leading " <<
Endl;
575 Log() <<
"to no separation. The simple transformation x -> |x| renders this " <<
Endl;
576 Log() <<
"variable powerful for the use in a linear discriminant." <<
Endl;
580 Log() <<
"<None>" <<
Endl;
#define REGISTER_METHOD(CLASS)
for example
TMatrixT< Double_t > TMatrixD
Class that contains all the data information.
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
void SetTarget(UInt_t itgt, Float_t value)
set the target value (dimension itgt) to value
Double_t GetWeight() const
return the event weight - depending on whether the flag IgnoreNegWeightsInTraining is or not.
std::vector< Float_t > & GetValues()
Float_t GetTarget(UInt_t itgt) const
Virtual base Class for all MVA method.
UInt_t GetNTargets() const
void GetSum(void)
Calculates the matrix transposed(X)*W*X with W being the diagonal weight matrix and X the coordinates...
void GetHelpMessage() const
get help message text
const Ranking * CreateRanking()
computes ranking of input variables
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
LD can handle classification with 2 classes and regression with one regression-target.
MethodLD(const TString &jobName, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="LD")
standard constructor for the LD
void DeclareOptions()
MethodLD options.
void GetLDCoeff(void)
Calculates the coefficients used for classification/regression.
virtual const std::vector< Float_t > & GetRegressionValues()
Calculates the regression output.
void ReadWeightsFromStream(std::istream &i)
read LD coefficients from weight file
void ReadWeightsFromXML(void *wghtnode)
read coefficients from xml weight file
void Init(void)
default initialization called by all constructors
void ProcessOptions()
this is the preparation for training
void PrintCoefficients(void)
Display the classification/regression coefficients for each variable.
void Train(void)
compute fSumMatx
virtual ~MethodLD(void)
destructor
void AddWeightsXMLTo(void *parent) const
create XML description for LD classification and regression (for arbitrary number of output classes/t...
void MakeClassSpecific(std::ostream &, const TString &) const
write LD-specific classifier response
void InitMatrices(void)
Initialization method; creates global matrices and vectors.
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
Returns the MVA classification output.
void GetSumVal(void)
Calculates the vector transposed(X)*W*Y with Y being the target vector.
Ranking for variables in method (implementation)
Singleton class for Global types used by TMVA.
TMatrixT< Element > & Invert(Double_t *det=0)
Invert the matrix and calculate its determinant.
virtual Double_t Determinant() const
Return the matrix determinant.
MsgLogger & Endl(MsgLogger &ml)