32#ifndef ROOT_TMVA_MethodBoost
33#define ROOT_TMVA_MethodBoost
55 namespace Experimental {
69 const TString& theOption =
"" );
#define ClassDef(name, id)
TH1 is the base class of all histogram classes in ROOT.
Class to perform two class classification.
Class that contains all the data information.
Class that contains all the data information.
This is the main MVA steering class.
Virtual base Class for all MVA method.
Class for boosting a TMVA method.
void MonitorBoost(Types::EBoostStage stage, UInt_t methodIdx=0)
fill various monitoring histograms from information of the individual classifiers that have been boos...
void ResetBoostWeights()
resetting back the boosted weights of the events to 1
MethodBase * CurrentMethod()
TString fBoostedMethodOptions
Double_t fBaggedSampleFraction
std::vector< TH1 * > fTestSigMVAHist
void SingleTrain()
initialization
void SetBoostedMethodName(TString methodName)
Bool_t fDetailedMonitoring
void PrintResults(const TString &, std::vector< Double_t > &, const Double_t) const
DataSetManager * fDataSetManager
virtual void WriteEvaluationHistosToFile(Types::ETreeType treetype)
writes all MVA evaluation histograms to file
std::vector< TH1 * > fTestBgdMVAHist
void CreateMVAHistorgrams()
Bool_t fHistoricBoolOption
void WriteMonitoringHistosToFile(void) const
write special monitoring histograms to file dummy implementation here --------------—
Double_t AdaBoost(MethodBase *method, Bool_t useYesNoLeaf)
the standard (discrete or real) AdaBoost algorithm
TString fBoostedMethodTitle
Bool_t BookMethod(Types::EMVA theMethod, TString methodTitle, TString theOption)
just registering the string from which the boosted classifier will be created
UInt_t CurrentMethodIdx()
std::vector< TH1 * > fTrainSigMVAHist
void CheckSetup()
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implement...
virtual void TestClassification()
initialization
void InitHistos()
initialisation routine
void ProcessOptions()
process user options
Double_t GetBoostROCIntegral(Bool_t, Types::ETreeType, Bool_t CalcOverlapIntergral=kFALSE)
Calculate the ROC integral of a single classifier or even the whole boosted classifier.
TString fBoostedMethodName
std::vector< TH1 * > fBTrainBgdMVAHist
std::vector< TH1 * > fTrainBgdMVAHist
Double_t SingleBoost(MethodBase *method)
Double_t CalcMethodWeight()
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
return boosted MVA response
std::vector< TH1 * > fBTrainSigMVAHist
Double_t Bagging()
Bagging or Bootstrap boosting, gives new random poisson weight for every event.
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
Boost can handle classification with 2 classes and regression with one regression-target.
const Ranking * CreateRanking()
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
std::vector< Float_t > * fMVAvalues
Bool_t fMonitorBoostedMethod
virtual ~MethodBoost(void)
destructor
void FindMVACut(MethodBase *method)
find the CUT on the individual MVA that defines an event as correct or misclassified (to be used in t...
Double_t fOverlap_integral
void GetHelpMessage() const
Get help message text.
Virtual base class for combining several TMVA method.
MethodBase * fCurrentMethod
Ranking for variables in method (implementation)
The Reader class serves to use the MVAs in a specific analysis context.
A TTree represents a columnar dataset.
create variable transformations