Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
GeneticAlgorithm.cxx
Go to the documentation of this file.
1// @(#)root/tmva $Id$
2// Author: Peter Speckmayer
3
4/**********************************************************************************
5 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6 * Package: TMVA *
7 * Class : TMVA::GeneticAlgorithm *
8 * Web : http://tmva.sourceforge.net *
9 * *
10 * Description: *
11 * Implementation (see header for description) *
12 * *
13 * Authors (alphabetical): *
14 * Peter Speckmayer <speckmay@mail.cern.ch> - CERN, Switzerland *
15 * *
16 * Copyright (c) 2005: *
17 * CERN, Switzerland *
18 * MPI-K Heidelberg, Germany *
19 * *
20 * Redistribution and use in source and binary forms, with or without *
21 * modification, are permitted according to the terms listed in LICENSE *
22 * (http://tmva.sourceforge.net/LICENSE) *
23 **********************************************************************************/
24
25/*! \class TMVA::GeneticAlgorithm
26\ingroup TMVA
27
28Base definition for genetic algorithm
29
30*/
31
32#include <algorithm>
33#include <cfloat>
34
35#ifdef _GLIBCXX_PARALLEL
36#include <omp.h>
37#endif
38
40#include "TMVA/Interval.h"
41#include "TMVA/IFitterTarget.h"
42#include "TMVA/MsgLogger.h"
43#include "TMVA/Types.h"
44
45#include "RtypesCore.h"
46#include "Rtypes.h"
47#include "TMath.h"
48
49namespace TMVA {
51}
52
54
55////////////////////////////////////////////////////////////////////////////////
56/// Constructor
57///
58/// Parameters:
59///
60/// - int populationSize : defines the number of "Individuals" which are created and tested
61/// within one Generation (Iteration of the Evolution)
62/// - std::vector<TMVA::Interval*> ranges : Interval holds the information of an interval, where the GetMin
63/// gets the low and GetMax gets the high constraint of the variable
64/// the size of "ranges" is the number of coefficients which are optimised
65/// Purpose:
66///
67/// Creates a random population with individuals of the size ranges.size()
68
70 const std::vector<Interval*>& ranges, UInt_t seed )
71: fConvCounter(-1),
72 fFitterTarget( target ),
73 fConvValue(0.),
74 fLastResult(DBL_MAX),
75 fSpread(0.1),
76 fMirror(kTRUE),
77 fFirstTime(kTRUE),
78 fMakeCopies(kFALSE),
79 fPopulationSize(populationSize),
80 fRanges( ranges ),
81 fPopulation(ranges, populationSize, seed),
82 fBestFitness(DBL_MAX),
83 fLogger( new MsgLogger("GeneticAlgorithm") )
84{
86}
87
89{
90 // destructor; deletes fLogger
91 delete fLogger;
92}
93
94
95////////////////////////////////////////////////////////////////////////////////
96/// calls evolution, but if it is not the first time.
97/// If it's the first time, the random population created by the
98/// constructor is still not evaluated, .. therefore we wait for the
99/// second time init is called.
100
102{
103 if ( fFirstTime ) fFirstTime = kFALSE;
104 else {
105 Evolution();
106 }
107}
108
109////////////////////////////////////////////////////////////////////////////////
110/// if the "fitnessFunction" is called multiple times for one set of
111/// factors (because i.e. each event of a TTree has to be assessed with
112/// each set of Factors proposed by the Genetic Algorithm) the value
113/// of the current calculation has to be added(? or else) to the value
114/// obtained up to now.
115/// example: some chi-square is calculated for every event,
116/// after every event the new chi-square (newValue) has to be simply
117/// added to the oldValue.
118///
119/// this function has to be overridden eventually
120/// it might contain only the following return statement.
121/// return oldValue + newValue;
122
124{
125 return newValue;
126}
127
128////////////////////////////////////////////////////////////////////////////////
129/// starts the evaluation of the fitness of all different individuals of
130/// the population.
131///
132/// this function calls implicitly (many times) the "fitnessFunction" which
133/// has been overridden by the user.
134
136{
137 fBestFitness = DBL_MAX;
138#ifdef _GLIBCXX_PARALLEL
139
140 const int nt = omp_get_num_threads();
141 Double_t bests[nt];
142 for ( int i =0; i < nt; ++i )
143 bests[i] = fBestFitness;
144
145#pragma omp parallel
146 {
147 int thread_number = omp_get_thread_num();
148#pragma omp for
149 for ( int index = 0; index < fPopulation.GetPopulationSize(); ++index )
150 {
151 GeneticGenes* genes = fPopulation.GetGenes(index);
152 Double_t fitness = NewFitness( genes->GetFitness(),
153 fFitterTarget.EstimatorFunction(genes->GetFactors()) );
154 genes->SetFitness( fitness );
155
156 if ( bests[thread_number] > fitness )
157 bests[thread_number] = fitness;
158 }
159 }
160
161 fBestFitness = *std::min_element(bests, bests+nt);
162
163#else
164
165 for ( int index = 0; index < fPopulation.GetPopulationSize(); ++index ) {
166 GeneticGenes* genes = fPopulation.GetGenes(index);
167 Double_t fitness = NewFitness( genes->GetFitness(),
168 fFitterTarget.EstimatorFunction(genes->GetFactors()) );
169 genes->SetFitness( fitness );
170
171 if ( fBestFitness > fitness )
172 fBestFitness = fitness;
173
174 }
175
176#endif
177
178 fPopulation.Sort();
179
180 return fBestFitness;
181}
182
183////////////////////////////////////////////////////////////////////////////////
184/// this function is called from "init" and controls the evolution of the
185/// individuals.
186///
187/// The function can be overridden to change the parameters for mutation rate
188/// sexual reproduction and so on.
189
191{
192 if ( fMakeCopies )
193 fPopulation.MakeCopies( 5 );
194 fPopulation.MakeChildren();
195
196 fPopulation.Mutate( 10, 3, kTRUE, fSpread, fMirror );
197 fPopulation.Mutate( 40, fPopulation.GetPopulationSize()*3/4 );
198}
199
200////////////////////////////////////////////////////////////////////////////////
201/// this function provides the ability to change the stepSize of a mutation according to
202/// the success of the last generations.
203///
204/// Parameters:
205///
206/// - int ofSteps : = if OF the number of STEPS given in this variable (ofSteps)
207/// - int successSteps : >sucessSteps Generations could improve the result
208/// - double factor : than multiply the stepSize ( spread ) by this factor
209///
210/// (if ofSteps == successSteps nothing is changed, if ofSteps < successSteps, the spread
211/// is divided by the factor)
212///
213/// using this function one can increase the stepSize of the mutation when we have
214/// good success (to pass fast through the easy phase-space) and reduce the stepSize
215/// if we are in a difficult "territory" of the phase-space.
216
218{
219 // < is valid for "less" comparison
220 if ( fBestFitness < fLastResult || fSuccessList.size() <=0 ) {
221 fLastResult = fBestFitness;
222 fSuccessList.push_front( 1 ); // it got better
223 }
224 else {
225 fSuccessList.push_front( 0 ); // it stayed the same
226 }
227 Int_t n = 0;
228 Int_t sum = 0;
229 std::deque<Int_t>::iterator vec = fSuccessList.begin();
230 for (; vec != fSuccessList.end() ; ++vec) {
231 sum += *vec;
232 n++;
233 }
234
235 if ( n >= ofSteps ) {
236 fSuccessList.pop_back();
237 if ( sum > successSteps ) { // too much success
238 fSpread /= factor;
239 if (GeneticAlgorithm__DEBUG__) Log() << kINFO << ">" << std::flush;
240 }
241 else if ( sum == successSteps ) { // on the optimal path
242 if (GeneticAlgorithm__DEBUG__) Log() << "=" << std::flush;
243 }
244 else { // not very successful
245 fSpread *= factor;
246 if (GeneticAlgorithm__DEBUG__) Log() << "<" << std::flush;
247 }
248 }
249
250 return fSpread;
251}
252
253////////////////////////////////////////////////////////////////////////////////
254/// gives back true if the last "steps" steps have lead to an improvement of the
255/// "fitness" of the "individuals" of at least "improvement"
256///
257/// this gives a simple measure of if the fitness of the individuals is
258/// converging and no major improvement is to be expected soon.
259
261{
262 if (fConvCounter < 0) {
263 fConvValue = fBestFitness;
264 }
265 if (TMath::Abs(fBestFitness - fConvValue) <= improvement || steps<0) {
266 fConvCounter ++;
267 }
268 else {
269 fConvCounter = 0;
270 fConvValue = fBestFitness;
271 }
272 if (GeneticAlgorithm__DEBUG__) Log() << "." << std::flush;
273 if (fConvCounter < steps) return kFALSE;
274 return kTRUE;
275}
const Bool_t kFALSE
Definition RtypesCore.h:101
bool Bool_t
Definition RtypesCore.h:63
double Double_t
Definition RtypesCore.h:59
const Bool_t kTRUE
Definition RtypesCore.h:100
#define ClassImp(name)
Definition Rtypes.h:364
Base definition for genetic algorithm.
virtual Double_t SpreadControl(Int_t steps, Int_t ofSteps, Double_t factor)
this function provides the ability to change the stepSize of a mutation according to the success of t...
virtual Bool_t HasConverged(Int_t steps=10, Double_t ratio=0.1)
gives back true if the last "steps" steps have lead to an improvement of the "fitness" of the "indivi...
GeneticPopulation fPopulation
void Init()
calls evolution, but if it is not the first time.
virtual void Evolution()
this function is called from "init" and controls the evolution of the individuals.
virtual Double_t CalculateFitness()
starts the evaluation of the fitness of all different individuals of the population.
GeneticAlgorithm(IFitterTarget &target, Int_t populationSize, const std::vector< TMVA::Interval * > &ranges, UInt_t seed=0)
Constructor.
virtual Double_t NewFitness(Double_t oldValue, Double_t newValue)
if the "fitnessFunction" is called multiple times for one set of factors (because i....
Cut optimisation interface class for genetic algorithm.
void SetFitness(Double_t fitness)
std::vector< Double_t > & GetFactors()
Double_t GetFitness() const
void SetRandomSeed(UInt_t seed=0)
the random seed of the random generator
Interface for a fitter 'target'.
ostringstream derivative to redirect and format output
Definition MsgLogger.h:57
const Bool_t GeneticAlgorithm__DEBUG__
const Int_t n
Definition legend1.C:16
create variable transformations
Short_t Abs(Short_t d)
Definition TMathBase.h:120
static uint64_t sum(uint64_t i)
Definition Factory.cxx:2345