1#ifndef ROOT_TMVA_CCPruner
2#define ROOT_TMVA_CCPruner
59 class DecisionTreeNode;
71 const DataSet* validationSample,
111 fAlpha = (alpha > 0 ? alpha : 0.0);
A helper class to prune a decision tree using the Cost Complexity method (see Classification and Regr...
Float_t GetOptimalQualityIndex() const
void SetPruneStrength(Float_t alpha=-1.0)
std::vector< Float_t > fQualityIndexList
map of alpha -> pruning index
void Optimize()
determine the pruning sequence
Bool_t fDebug
index of the optimal tree in the pruned tree sequence
Bool_t fOwnQIndex
the quality index used to calculate R(t), R(T) = sum[t in ~T]{ R(t) }
std::vector< Event * > EventList
std::vector< TMVA::DecisionTreeNode * > fPruneSequence
(pruned) decision tree
const EventList * fValidationSample
regularization parameter in CC pruning
std::vector< TMVA::DecisionTreeNode * > GetOptimalPruneSequence() const
return the prune strength (=alpha) corresponding to the prune sequence
Int_t fOptimalK
map of R(T) -> pruning index
const DataSet * fValidationDataSet
the event sample to select the optimally-pruned tree
std::vector< Float_t > fPruneStrengthList
map of weakest links (i.e., branches to prune) -> pruning index
SeparationBase * fQualityIndex
the event sample to select the optimally-pruned tree
DecisionTree * fTree
flag indicates if fQualityIndex is owned by this
Float_t GetOptimalPruneStrength() const
Class that contains all the data information.
Implementation of a Decision Tree.
An interface to calculate the "SeparationGain" for different separation criteria used in various trai...
create variable transformations