50void TMVARegression(
TString myMethodList =
"" )
68 std::map<std::string,int> Use;
100 std::cout << std::endl;
101 std::cout <<
"==> Start TMVARegression" << std::endl;
104 if (myMethodList !=
"") {
105 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
108 for (
UInt_t i=0; i<mlist.size(); i++) {
109 std::string regMethod(mlist[i].Data());
111 if (Use.find(regMethod) == Use.end()) {
112 std::cout <<
"Method \"" << regMethod <<
"\" not known in TMVA under this name. Choose among the following:" << std::endl;
113 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first <<
" ";
114 std::cout << std::endl;
126 TString outfileName(
"TMVAReg.root" );
140 "!V:!Silent:Color:DrawProgressBar:AnalysisType=Regression" );
153 dataloader->
AddVariable(
"var1",
"Variable 1",
"units",
'F' );
154 dataloader->
AddVariable(
"var2",
"Variable 2",
"units",
'F' );
159 dataloader->
AddSpectator(
"spec1:=var1*2",
"Spectator 1",
"units",
'F' );
160 dataloader->
AddSpectator(
"spec2:=var1*3",
"Spectator 2",
"units",
'F' );
172 TString fname =
"./tmva_reg_example.root";
178 input =
TFile::Open(
"http://root.cern.ch/files/tmva_reg_example.root",
"CACHEREAD");
181 std::cout <<
"ERROR: could not open data file" << std::endl;
184 std::cout <<
"--- TMVARegression : Using input file: " << input->GetName() << std::endl;
205 "nTrain_Regression=1000:nTest_Regression=0:SplitMode=Random:NormMode=NumEvents:!V" );
225 "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=40:NEventsMax=60:VarTransform=None" );
233 "!H:!V:MultiTargetRegression=F:TargetSelection=Mpv:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Compress=T:Kernel=None:Nmin=10:VarTransform=None" );
238 "nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" );
243 "!H:!V:VarTransform=None" );
248 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=MC:SampleSize=100000:Sigma=0.1:VarTransform=D" );
252 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:PopSize=100:Cycles=3:Steps=30:Trim=True:SaveBestGen=1:VarTransform=Norm" );
256 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );
260 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );
264 factory->
BookMethod( dataloader,
TMVA::Types::kMLP,
"MLP",
"!H:!V:VarTransform=Norm:NeuronType=tanh:NCycles=20000:HiddenLayers=N+20:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15:!UseRegulator" );
266 if (Use[
"DNN_CPU"]) {
268 TString layoutString(
"Layout=TANH|50,TANH|50,TANH|50,LINEAR");
271 TString trainingStrategyString(
"TrainingStrategy=");
273 trainingStrategyString +=
"LearningRate=1e-3,Momentum=0.3,ConvergenceSteps=20,BatchSize=50,TestRepetitions=1,WeightDecay=0.0,Regularization=None,Optimizer=Adam";
275 TString nnOptions(
"!H:V:ErrorStrategy=SUMOFSQUARES:VarTransform=G:WeightInitialization=XAVIERUNIFORM:Architecture=CPU");
276 nnOptions.Append(
":");
277 nnOptions.Append(layoutString);
278 nnOptions.Append(
":");
279 nnOptions.Append(trainingStrategyString);
293 "!H:!V:NTrees=100:MinNodeSize=1.0%:BoostType=AdaBoostR2:SeparationType=RegressionVariance:nCuts=20:PruneMethod=CostComplexity:PruneStrength=30" );
297 "!H:!V:NTrees=2000::BoostType=Grad:Shrinkage=0.1:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=3:MaxDepth=4" );
316 std::cout <<
"==> Wrote root file: " << outputFile->
GetName() << std::endl;
317 std::cout <<
"==> TMVARegression is done!" << std::endl;
326int main(
int argc,
char** argv )
330 for (
int i=1; i<argc; i++) {
332 if(regMethod==
"-b" || regMethod==
"--batch")
continue;
334 methodList += regMethod;
336 TMVARegression(methodList);
R__EXTERN TSystem * gSystem
A specialized string object used for TTree selections.
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
static Bool_t SetCacheFileDir(ROOT::Internal::TStringView cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
void Close(Option_t *option="") override
Close a file.
void AddSpectator(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
void AddRegressionTree(TTree *tree, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
void SetWeightExpression(const TString &variable, const TString &className="")
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
void AddTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
This is the main MVA steering class.
void TrainAllMethods()
Iterates through all booked methods and calls training.
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Book a classifier or regression method.
void TestAllMethods()
Evaluates all booked methods on the testing data and adds the output to the Results in the corresponi...
void EvaluateAllMethods(void)
Iterates over all MVAs that have been booked, and calls their evaluation methods.
virtual const char * GetName() const
Returns name of object.
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
A TTree represents a columnar dataset.
create variable transformations
void TMVARegGui(const char *fName="TMVAReg.root", TString dataset="")