Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TMVARegression.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_tmva
3/// \notebook -nodraw
4/// This macro provides examples for the training and testing of the
5/// TMVA classifiers.
6///
7/// As input data is used a toy-MC sample consisting of four Gaussian-distributed
8/// and linearly correlated input variables.
9///
10/// The methods to be used can be switched on and off by means of booleans, or
11/// via the prompt command, for example:
12///
13/// root -l TMVARegression.C\‍(\"LD,MLP\"\‍)
14///
15/// (note that the backslashes are mandatory)
16/// If no method given, a default set is used.
17///
18/// The output file "TMVAReg.root" can be analysed with the use of dedicated
19/// macros (simply say: root -l <macro.C>), which can be conveniently
20/// invoked through a GUI that will appear at the end of the run of this macro.
21/// - Project : TMVA - a Root-integrated toolkit for multivariate data analysis
22/// - Package : TMVA
23/// - Root Macro: TMVARegression
24///
25/// \macro_output
26/// \macro_code
27/// \author Andreas Hoecker
28
29#include <cstdlib>
30#include <iostream>
31#include <map>
32#include <string>
33
34#include "TChain.h"
35#include "TFile.h"
36#include "TTree.h"
37#include "TString.h"
38#include "TObjString.h"
39#include "TSystem.h"
40#include "TROOT.h"
41
42#include "TMVA/Tools.h"
43#include "TMVA/Factory.h"
44#include "TMVA/DataLoader.h"
45#include "TMVA/TMVARegGui.h"
46
47
48using namespace TMVA;
49
50void TMVARegression( TString myMethodList = "" )
51{
52 // The explicit loading of the shared libTMVA is done in TMVAlogon.C, defined in .rootrc
53 // if you use your private .rootrc, or run from a different directory, please copy the
54 // corresponding lines from .rootrc
55
56 // methods to be processed can be given as an argument; use format:
57 //
58 // mylinux~> root -l TMVARegression.C\‍(\"myMethod1,myMethod2,myMethod3\"\‍)
59 //
60
61 //---------------------------------------------------------------
62 // This loads the library
64
65
66
67 // Default MVA methods to be trained + tested
68 std::map<std::string,int> Use;
69
70 // Mutidimensional likelihood and Nearest-Neighbour methods
71 Use["PDERS"] = 0;
72 Use["PDEFoam"] = 1;
73 Use["KNN"] = 1;
74 //
75 // Linear Discriminant Analysis
76 Use["LD"] = 1;
77 //
78 // Function Discriminant analysis
79 Use["FDA_GA"] = 0;
80 Use["FDA_MC"] = 0;
81 Use["FDA_MT"] = 0;
82 Use["FDA_GAMT"] = 0;
83 //
84 // Neural Network
85 Use["MLP"] = 0;
86#ifdef R__HAS_TMVACPU
87 Use["DNN_CPU"] = 1;
88#else
89 Use["DNN_CPU"] = 0;
90#endif
91 //
92 // Support Vector Machine
93 Use["SVM"] = 0;
94 //
95 // Boosted Decision Trees
96 Use["BDT"] = 0;
97 Use["BDTG"] = 1;
98 // ---------------------------------------------------------------
99
100 std::cout << std::endl;
101 std::cout << "==> Start TMVARegression" << std::endl;
102
103 // Select methods (don't look at this code - not of interest)
104 if (myMethodList != "") {
105 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
106
107 std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' );
108 for (UInt_t i=0; i<mlist.size(); i++) {
109 std::string regMethod(mlist[i].Data());
110
111 if (Use.find(regMethod) == Use.end()) {
112 std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
113 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " ";
114 std::cout << std::endl;
115 return;
116 }
117 Use[regMethod] = 1;
118 }
119 }
120
121 // --------------------------------------------------------------------------------------------------
122
123 // Here the preparation phase begins
124
125 // Create a new root output file
126 TString outfileName( "TMVAReg.root" );
127 TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
128
129 // Create the factory object. Later you can choose the methods
130 // whose performance you'd like to investigate. The factory will
131 // then run the performance analysis for you.
132 //
133 // The first argument is the base of the name of all the
134 // weightfiles in the directory weight/
135 //
136 // The second argument is the output file for the training results
137 // All TMVA output can be suppressed by removing the "!" (not) in
138 // front of the "Silent" argument in the option string
139 TMVA::Factory *factory = new TMVA::Factory( "TMVARegression", outputFile,
140 "!V:!Silent:Color:DrawProgressBar:AnalysisType=Regression" );
141
142
143 TMVA::DataLoader *dataloader=new TMVA::DataLoader("dataset");
144 // If you wish to modify default settings
145 // (please check "src/Config.h" to see all available global options)
146 //
147 // (TMVA::gConfig().GetVariablePlotting()).fTimesRMS = 8.0;
148 // (TMVA::gConfig().GetIONames()).fWeightFileDir = "myWeightDirectory";
149
150 // Define the input variables that shall be used for the MVA training
151 // note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
152 // [all types of expressions that can also be parsed by TTree::Draw( "expression" )]
153 dataloader->AddVariable( "var1", "Variable 1", "units", 'F' );
154 dataloader->AddVariable( "var2", "Variable 2", "units", 'F' );
155
156 // You can add so-called "Spectator variables", which are not used in the MVA training,
157 // but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the
158 // input variables, the response values of all trained MVAs, and the spectator variables
159 dataloader->AddSpectator( "spec1:=var1*2", "Spectator 1", "units", 'F' );
160 dataloader->AddSpectator( "spec2:=var1*3", "Spectator 2", "units", 'F' );
161
162 // Add the variable carrying the regression target
163 dataloader->AddTarget( "fvalue" );
164
165 // It is also possible to declare additional targets for multi-dimensional regression, ie:
166 // factory->AddTarget( "fvalue2" );
167 // BUT: this is currently ONLY implemented for MLP
168
169 // Read training and test data (see TMVAClassification for reading ASCII files)
170 // load the signal and background event samples from ROOT trees
171 TFile *input(0);
172 TString fname = "./tmva_reg_example.root";
173 if (!gSystem->AccessPathName( fname )) {
174 input = TFile::Open( fname ); // check if file in local directory exists
175 }
176 else {
178 input = TFile::Open("http://root.cern.ch/files/tmva_reg_example.root", "CACHEREAD"); // if not: download from ROOT server
179 }
180 if (!input) {
181 std::cout << "ERROR: could not open data file" << std::endl;
182 exit(1);
183 }
184 std::cout << "--- TMVARegression : Using input file: " << input->GetName() << std::endl;
185
186 // Register the regression tree
187
188 TTree *regTree = (TTree*)input->Get("TreeR");
189
190 // global event weights per tree (see below for setting event-wise weights)
191 Double_t regWeight = 1.0;
192
193 // You can add an arbitrary number of regression trees
194 dataloader->AddRegressionTree( regTree, regWeight );
195
196 // This would set individual event weights (the variables defined in the
197 // expression need to exist in the original TTree)
198 dataloader->SetWeightExpression( "var1", "Regression" );
199
200 // Apply additional cuts on the signal and background samples (can be different)
201 TCut mycut = ""; // for example: TCut mycut = "abs(var1)<0.5 && abs(var2-0.5)<1";
202
203 // tell the DataLoader to use all remaining events in the trees after training for testing:
204 dataloader->PrepareTrainingAndTestTree( mycut,
205 "nTrain_Regression=1000:nTest_Regression=0:SplitMode=Random:NormMode=NumEvents:!V" );
206 //
207 // dataloader->PrepareTrainingAndTestTree( mycut,
208 // "nTrain_Regression=0:nTest_Regression=0:SplitMode=Random:NormMode=NumEvents:!V" );
209
210 // If no numbers of events are given, half of the events in the tree are used
211 // for training, and the other half for testing:
212 //
213 // dataloader->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );
214
215 // Book MVA methods
216 //
217 // Please lookup the various method configuration options in the corresponding cxx files, eg:
218 // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
219 // it is possible to preset ranges in the option string in which the cut optimisation should be done:
220 // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable
221
222 // PDE - RS method
223 if (Use["PDERS"])
224 factory->BookMethod( dataloader, TMVA::Types::kPDERS, "PDERS",
225 "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=40:NEventsMax=60:VarTransform=None" );
226 // And the options strings for the MinMax and RMS methods, respectively:
227 //
228 // "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );
229 // "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );
230
231 if (Use["PDEFoam"])
232 factory->BookMethod( dataloader, TMVA::Types::kPDEFoam, "PDEFoam",
233 "!H:!V:MultiTargetRegression=F:TargetSelection=Mpv:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Compress=T:Kernel=None:Nmin=10:VarTransform=None" );
234
235 // K-Nearest Neighbour classifier (KNN)
236 if (Use["KNN"])
237 factory->BookMethod( dataloader, TMVA::Types::kKNN, "KNN",
238 "nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" );
239
240 // Linear discriminant
241 if (Use["LD"])
242 factory->BookMethod( dataloader, TMVA::Types::kLD, "LD",
243 "!H:!V:VarTransform=None" );
244
245 // Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
246 if (Use["FDA_MC"])
247 factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_MC",
248 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=MC:SampleSize=100000:Sigma=0.1:VarTransform=D" );
249
250 if (Use["FDA_GA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options) .. the formula of this example is good for parabolas
251 factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_GA",
252 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:PopSize=100:Cycles=3:Steps=30:Trim=True:SaveBestGen=1:VarTransform=Norm" );
253
254 if (Use["FDA_MT"])
255 factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_MT",
256 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );
257
258 if (Use["FDA_GAMT"])
259 factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_GAMT",
260 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );
261
262 // Neural network (MLP)
263 if (Use["MLP"])
264 factory->BookMethod( dataloader, TMVA::Types::kMLP, "MLP", "!H:!V:VarTransform=Norm:NeuronType=tanh:NCycles=20000:HiddenLayers=N+20:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15:!UseRegulator" );
265
266 if (Use["DNN_CPU"]) {
267
268 TString layoutString("Layout=TANH|50,TANH|50,TANH|50,LINEAR");
269
270
271 TString trainingStrategyString("TrainingStrategy=");
272
273 trainingStrategyString +="LearningRate=1e-3,Momentum=0.3,ConvergenceSteps=20,BatchSize=50,TestRepetitions=1,WeightDecay=0.0,Regularization=None,Optimizer=Adam";
274
275 TString nnOptions("!H:V:ErrorStrategy=SUMOFSQUARES:VarTransform=G:WeightInitialization=XAVIERUNIFORM:Architecture=CPU");
276 nnOptions.Append(":");
277 nnOptions.Append(layoutString);
278 nnOptions.Append(":");
279 nnOptions.Append(trainingStrategyString);
280
281 factory->BookMethod(dataloader, TMVA::Types::kDL, "DNN_CPU", nnOptions); // NN
282 }
283
284
285
286 // Support Vector Machine
287 if (Use["SVM"])
288 factory->BookMethod( dataloader, TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" );
289
290 // Boosted Decision Trees
291 if (Use["BDT"])
292 factory->BookMethod( dataloader, TMVA::Types::kBDT, "BDT",
293 "!H:!V:NTrees=100:MinNodeSize=1.0%:BoostType=AdaBoostR2:SeparationType=RegressionVariance:nCuts=20:PruneMethod=CostComplexity:PruneStrength=30" );
294
295 if (Use["BDTG"])
296 factory->BookMethod( dataloader, TMVA::Types::kBDT, "BDTG",
297 "!H:!V:NTrees=2000::BoostType=Grad:Shrinkage=0.1:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=3:MaxDepth=4" );
298 // --------------------------------------------------------------------------------------------------
299
300 // Now you can tell the factory to train, test, and evaluate the MVAs
301
302 // Train MVAs using the set of training events
303 factory->TrainAllMethods();
304
305 // Evaluate all MVAs using the set of test events
306 factory->TestAllMethods();
307
308 // Evaluate and compare performance of all configured MVAs
309 factory->EvaluateAllMethods();
310
311 // --------------------------------------------------------------
312
313 // Save the output
314 outputFile->Close();
315
316 std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
317 std::cout << "==> TMVARegression is done!" << std::endl;
318
319 delete factory;
320 delete dataloader;
321
322 // Launch the GUI for the root macros
323 if (!gROOT->IsBatch()) TMVA::TMVARegGui( outfileName );
324}
325
326int main( int argc, char** argv )
327{
328 // Select methods (don't look at this code - not of interest)
329 TString methodList;
330 for (int i=1; i<argc; i++) {
331 TString regMethod(argv[i]);
332 if(regMethod=="-b" || regMethod=="--batch") continue;
333 if (!methodList.IsNull()) methodList += TString(",");
334 methodList += regMethod;
335 }
336 TMVARegression(methodList);
337 return 0;
338}
unsigned int UInt_t
Definition RtypesCore.h:46
double Double_t
Definition RtypesCore.h:59
#define gROOT
Definition TROOT.h:406
R__EXTERN TSystem * gSystem
Definition TSystem.h:559
A specialized string object used for TTree selections.
Definition TCut.h:25
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition TFile.h:54
static Bool_t SetCacheFileDir(ROOT::Internal::TStringView cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
Definition TFile.h:324
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition TFile.cxx:3997
void Close(Option_t *option="") override
Close a file.
Definition TFile.cxx:879
void AddSpectator(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
void AddRegressionTree(TTree *tree, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
Definition DataLoader.h:103
void SetWeightExpression(const TString &variable, const TString &className="")
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
void AddTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
This is the main MVA steering class.
Definition Factory.h:80
void TrainAllMethods()
Iterates through all booked methods and calls training.
Definition Factory.cxx:1114
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Book a classifier or regression method.
Definition Factory.cxx:352
void TestAllMethods()
Evaluates all booked methods on the testing data and adds the output to the Results in the corresponi...
Definition Factory.cxx:1271
void EvaluateAllMethods(void)
Iterates over all MVAs that have been booked, and calls their evaluation methods.
Definition Factory.cxx:1376
static Tools & Instance()
Definition Tools.cxx:75
std::vector< TString > SplitString(const TString &theOpt, const char separator) const
splits the option string at 'separator' and fills the list 'splitV' with the primitive strings
Definition Tools.cxx:1211
@ kPDEFoam
Definition Types.h:96
virtual const char * GetName() const
Returns name of object.
Definition TNamed.h:47
Basic string class.
Definition TString.h:136
Bool_t IsNull() const
Definition TString.h:407
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition TSystem.cxx:1294
A TTree represents a columnar dataset.
Definition TTree.h:79
int main()
create variable transformations
void TMVARegGui(const char *fName="TMVAReg.root", TString dataset="")
Tools & gTools()