50void TMVARegression(
TString myMethodList =
"" )
68 std::map<std::string,int> Use;
107 std::cout << std::endl;
108 std::cout <<
"==> Start TMVARegression" << std::endl;
111 if (myMethodList !=
"") {
112 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
115 for (
UInt_t i=0; i<mlist.size(); i++) {
116 std::string regMethod(mlist[i].Data());
118 if (Use.find(regMethod) == Use.end()) {
119 std::cout <<
"Method \"" << regMethod <<
"\" not known in TMVA under this name. Choose among the following:" << std::endl;
120 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first <<
" ";
121 std::cout << std::endl;
133 TString outfileName(
"TMVAReg.root" );
147 "!V:!Silent:Color:DrawProgressBar:AnalysisType=Regression" );
160 dataloader->
AddVariable(
"var1",
"Variable 1",
"units",
'F' );
161 dataloader->
AddVariable(
"var2",
"Variable 2",
"units",
'F' );
166 dataloader->
AddSpectator(
"spec1:=var1*2",
"Spectator 1",
"units",
'F' );
167 dataloader->
AddSpectator(
"spec2:=var1*3",
"Spectator 2",
"units",
'F' );
179 TString fname =
"./tmva_reg_example.root";
185 input =
TFile::Open(
"http://root.cern/files/tmva_reg_example.root",
"CACHEREAD");
188 std::cout <<
"ERROR: could not open data file" << std::endl;
191 std::cout <<
"--- TMVARegression : Using input file: " <<
input->GetName() << std::endl;
212 "nTrain_Regression=1000:nTest_Regression=0:SplitMode=Random:NormMode=NumEvents:!V" );
232 "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=40:NEventsMax=60:VarTransform=None" );
240 "!H:!V:MultiTargetRegression=F:TargetSelection=Mpv:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Compress=T:Kernel=None:Nmin=10:VarTransform=None" );
245 "nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" );
250 "!H:!V:VarTransform=None" );
255 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=MC:SampleSize=100000:Sigma=0.1:VarTransform=D" );
259 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:PopSize=100:Cycles=3:Steps=30:Trim=True:SaveBestGen=1:VarTransform=Norm" );
263 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );
267 "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );
271 factory->
BookMethod( dataloader,
TMVA::Types::kMLP,
"MLP",
"!H:!V:VarTransform=Norm:NeuronType=tanh:NCycles=20000:HiddenLayers=N+20:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15:!UseRegulator" );
273 if (Use[
"DNN_CPU"] || Use[
"DNN_GPU"]) {
275 TString archOption = Use[
"DNN_GPU"] ?
"GPU" :
"CPU";
277 TString layoutString(
"Layout=TANH|50,TANH|50,TANH|50,LINEAR");
280 TString trainingStrategyString(
"TrainingStrategy=");
282 trainingStrategyString +=
"LearningRate=1e-3,Momentum=0.3,ConvergenceSteps=20,BatchSize=50,TestRepetitions=1,WeightDecay=0.0,Regularization=None,Optimizer=Adam";
284 TString nnOptions(
"!H:V:ErrorStrategy=SUMOFSQUARES:VarTransform=G:WeightInitialization=XAVIERUNIFORM:Architecture=");
285 nnOptions.Append(archOption);
286 nnOptions.Append(
":");
287 nnOptions.Append(layoutString);
288 nnOptions.Append(
":");
289 nnOptions.Append(trainingStrategyString);
305 "!H:!V:NTrees=100:MinNodeSize=1.0%:BoostType=AdaBoostR2:SeparationType=RegressionVariance:nCuts=20:PruneMethod=CostComplexity:PruneStrength=30" );
309 "!H:!V:NTrees=2000::BoostType=Grad:Shrinkage=0.1:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=3:MaxDepth=4" );
328 std::cout <<
"==> Wrote root file: " << outputFile->
GetName() << std::endl;
329 std::cout <<
"==> TMVARegression is done!" << std::endl;
338int main(
int argc,
char** argv )
342 for (
int i=1; i<argc; i++) {
344 if(regMethod==
"-b" || regMethod==
"--batch")
continue;
346 methodList += regMethod;
348 TMVARegression(methodList);
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
R__EXTERN TSystem * gSystem
A specialized string object used for TTree selections.
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
static Bool_t SetCacheFileDir(std::string_view cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
Sets the directory where to locally stage/cache remote files.
void Close(Option_t *option="") override
Close a file.
void AddSpectator(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
void AddRegressionTree(TTree *tree, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
void SetWeightExpression(const TString &variable, const TString &className="")
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
void AddTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
This is the main MVA steering class.
void TrainAllMethods()
Iterates through all booked methods and calls training.
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Book a classifier or regression method.
void TestAllMethods()
Evaluates all booked methods on the testing data and adds the output to the Results in the corresponi...
void EvaluateAllMethods(void)
Iterates over all MVAs that have been booked, and calls their evaluation methods.
const char * GetName() const override
Returns name of object.
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
A TTree represents a columnar dataset.
create variable transformations
void TMVARegGui(const char *fName="TMVAReg.root", TString dataset="")