Start Test TMVAGAexample
========================
... event: 0 (200)
======> EVENT:0
var1 = -1.14361
var2 = -0.822373
var3 = -0.395426
var4 = -0.529427
created tree: TreeS
... event: 0 (200)
======> EVENT:0
var1 = -1.54361
var2 = -1.42237
var3 = -1.39543
var4 = -2.02943
created tree: TreeB0
... event: 0 (200)
======> EVENT:0
var1 = -1.54361
var2 = -0.822373
var3 = -0.395426
var4 = -2.02943
created tree: TreeB1
======> EVENT:0
var1 = 0.463304
var2 = 1.37192
var3 = -1.16769
var4 = -1.77551
created tree: TreeB2
created data file: tmva_example_multiple_background.root
========================
--- Training
<HEADER> DataSetInfo : [datasetBkg0] : Added class "Signal"
: Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo : [datasetBkg0] : Added class "Background"
: Add Tree TreeB0 of type Background with 200 events
<HEADER> Factory : Booking method: BDTG
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Building event vectors for type 2 Signal
: Dataset[datasetBkg0] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[datasetBkg0] : create input formulas for tree TreeB0
<HEADER> DataSetFactory : [datasetBkg0] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 100
: Signal -- testing events : 100
: Signal -- training and testing events: 200
: Background -- training events : 100
: Background -- testing events : 100
: Background -- training and testing events: 200
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.427 +0.620 +0.834
: var2: +0.427 +1.000 +0.756 +0.779
: var3: +0.620 +0.756 +1.000 +0.854
: var4: +0.834 +0.779 +0.854 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.390 +0.543 +0.801
: var2: +0.390 +1.000 +0.787 +0.768
: var3: +0.543 +0.787 +1.000 +0.837
: var4: +0.801 +0.768 +0.837 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [datasetBkg0] :
:
<HEADER> Factory : Train all methods
<HEADER> Factory : [datasetBkg0] : Create Transformation "I" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "P" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "G" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.0025285 1.0135 [ -3.1150 2.2852 ]
: var2: 0.015478 1.1254 [ -3.6952 3.1113 ]
: var3: 0.083688 1.1724 [ -3.3587 3.9796 ]
: var4: 0.18853 1.3296 [ -3.7913 4.1179 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.12706 1.0000 [ -3.2013 2.4661 ]
: var2: -0.094932 1.0000 [ -2.7387 2.4399 ]
: var3: -0.0075796 1.0000 [ -2.7068 3.2704 ]
: var4: 0.28226 1.0000 [ -1.9230 2.3683 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 3.3271e-09 2.0955 [ -6.9024 6.2810 ]
: var2: 5.4250e-10 0.81719 [ -2.1933 1.8247 ]
: var3: 7.3866e-10 0.50438 [ -1.2415 1.1920 ]
: var4: 2.1420e-10 0.35074 [ -0.85693 1.0044 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.18815 1.0000 [ -1.2538 5.4391 ]
: var2: 0.14382 1.0000 [ -2.0629 6.0054 ]
: var3: 0.11380 1.0000 [ -2.0399 7.5442 ]
: var4: 0.048569 1.0000 [ -2.7199 5.5633 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
<HEADER> IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Separation
: -----------------------------------
: 1 : Variable 4 : 4.418e-01
: 2 : Variable 3 : 3.388e-01
: 3 : Variable 2 : 2.147e-01
: 4 : Variable 1 : 1.485e-01
: -----------------------------------
<HEADER> Factory : Train method: BDTG for Classification
:
<HEADER> BDTG : #events: (reweighted) sig: 100 bkg: 100
: #events: (unweighted) sig: 100 bkg: 100
: Training 1000 Decision Trees ... patience please
: Elapsed time for training with 200 events: 0.101 sec
<HEADER> BDTG : [datasetBkg0] : Evaluation of BDTG on training sample (200 events)
: Elapsed time for evaluation of 200 events: 0.0148 sec
: Creating xml weight file: datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml
: Creating standalone class: datasetBkg0/weights/TMVAMultiBkg0_BDTG.class.C
: TMVASignalBackground0.root:/datasetBkg0/Method_BDT/BDTG
<HEADER> Factory : Training finished
:
: Ranking input variables (method specific)...
<HEADER> BDTG : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : var1 : 2.673e-01
: 2 : var2 : 2.603e-01
: 3 : var3 : 2.490e-01
: 4 : var4 : 2.234e-01
: --------------------------------------
<HEADER> Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml
<HEADER> Factory : Test all methods
<HEADER> Factory : Test method: BDTG for Classification performance
:
<HEADER> BDTG : [datasetBkg0] : Evaluation of BDTG on testing sample (200 events)
: Elapsed time for evaluation of 200 events: 0.0102 sec
<HEADER> Factory : Evaluate all methods
<HEADER> Factory : Evaluate classifier: BDTG
:
<HEADER> BDTG : [datasetBkg0] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_BDTG : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.13613 0.97981 [ -2.0823 2.9998 ]
: var2: 0.085482 0.86846 [ -1.9349 2.0015 ]
: var3: 0.16949 0.99559 [ -2.4774 3.0223 ]
: var4: 0.33525 1.2442 [ -2.9030 3.3317 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: datasetBkg0 BDTG : 0.936
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: datasetBkg0 BDTG : 0.000 (0.975) 0.770 (0.977) 0.975 (0.982)
: -------------------------------------------------------------------------------------------------------------------
:
<HEADER> Dataset:datasetBkg0 : Created tree 'TestTree' with 200 events
:
<HEADER> Dataset:datasetBkg0 : Created tree 'TrainTree' with 200 events
:
<HEADER> Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
<HEADER> DataSetInfo : [datasetBkg1] : Added class "Signal"
: Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo : [datasetBkg1] : Added class "Background"
: Add Tree TreeB1 of type Background with 200 events
<HEADER> Factory : Booking method: BDTG
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Building event vectors for type 2 Signal
: Dataset[datasetBkg1] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[datasetBkg1] : create input formulas for tree TreeB1
<HEADER> DataSetFactory : [datasetBkg1] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 100
: Signal -- testing events : 100
: Signal -- training and testing events: 200
: Background -- training events : 100
: Background -- testing events : 100
: Background -- training and testing events: 200
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.427 +0.620 +0.834
: var2: +0.427 +1.000 +0.756 +0.779
: var3: +0.620 +0.756 +1.000 +0.854
: var4: +0.834 +0.779 +0.854 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.390 +0.543 +0.801
: var2: +0.390 +1.000 +0.787 +0.768
: var3: +0.543 +0.787 +1.000 +0.837
: var4: +0.801 +0.768 +0.837 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [datasetBkg1] :
:
<HEADER> Factory : Train all methods
<HEADER> Factory : [datasetBkg1] : Create Transformation "I" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "P" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "G" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.0025285 1.0135 [ -3.1150 2.2852 ]
: var2: 0.31548 1.0836 [ -3.0952 3.1113 ]
: var3: 0.58369 1.0377 [ -2.3587 3.9796 ]
: var4: 0.18853 1.3296 [ -3.7913 4.1179 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.18796 1.0000 [ -3.2043 2.5135 ]
: var2: 0.060618 1.0000 [ -2.5942 2.5176 ]
: var3: 0.71489 1.0000 [ -1.9164 4.0104 ]
: var4: -0.014100 1.0000 [ -2.1785 2.3322 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 2.2165e-09 1.9481 [ -6.5131 5.8550 ]
: var2: 1.9686e-09 0.87136 [ -2.4299 2.1873 ]
: var3: 8.5915e-10 0.53326 [ -1.6219 1.2402 ]
: var4:-3.8999e-10 0.45543 [ -1.1278 1.1965 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.18140 1.0000 [ -1.2839 5.4441 ]
: var2: 0.12101 1.0000 [ -2.0797 6.0929 ]
: var3: 0.13453 1.0000 [ -1.6667 5.8802 ]
: var4: 0.068813 1.0000 [ -1.8739 5.5007 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
<HEADER> IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Separation
: -----------------------------------
: 1 : Variable 4 : 4.418e-01
: 2 : Variable 1 : 1.485e-01
: 3 : Variable 3 : 5.784e-02
: 4 : Variable 2 : 3.636e-02
: -----------------------------------
<HEADER> Factory : Train method: BDTG for Classification
:
<HEADER> BDTG : #events: (reweighted) sig: 100 bkg: 100
: #events: (unweighted) sig: 100 bkg: 100
: Training 1000 Decision Trees ... patience please
: Elapsed time for training with 200 events: 0.0974 sec
<HEADER> BDTG : [datasetBkg1] : Evaluation of BDTG on training sample (200 events)
: Elapsed time for evaluation of 200 events: 0.0155 sec
: Creating xml weight file: datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml
: Creating standalone class: datasetBkg1/weights/TMVAMultiBkg1_BDTG.class.C
: TMVASignalBackground1.root:/datasetBkg1/Method_BDT/BDTG
<HEADER> Factory : Training finished
:
: Ranking input variables (method specific)...
<HEADER> BDTG : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : var3 : 2.759e-01
: 2 : var1 : 2.623e-01
: 3 : var4 : 2.431e-01
: 4 : var2 : 2.187e-01
: --------------------------------------
<HEADER> Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml
<HEADER> Factory : Test all methods
<HEADER> Factory : Test method: BDTG for Classification performance
:
<HEADER> BDTG : [datasetBkg1] : Evaluation of BDTG on testing sample (200 events)
: Elapsed time for evaluation of 200 events: 0.0101 sec
<HEADER> Factory : Evaluate all methods
<HEADER> Factory : Evaluate classifier: BDTG
:
<HEADER> BDTG : [datasetBkg1] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_BDTG : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.13613 0.97981 [ -2.0823 2.9998 ]
: var2: 0.38548 0.81654 [ -1.3349 2.5106 ]
: var3: 0.66949 0.88808 [ -1.4774 3.9796 ]
: var4: 0.33525 1.2442 [ -2.9030 3.3317 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: datasetBkg1 BDTG : 0.993
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: datasetBkg1 BDTG : 0.000 (0.985) 0.985 (0.987) 0.989 (0.991)
: -------------------------------------------------------------------------------------------------------------------
:
<HEADER> Dataset:datasetBkg1 : Created tree 'TestTree' with 200 events
:
<HEADER> Dataset:datasetBkg1 : Created tree 'TrainTree' with 200 events
:
<HEADER> Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
<HEADER> DataSetInfo : [datasetBkg2] : Added class "Signal"
: Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo : [datasetBkg2] : Added class "Background"
: Add Tree TreeB2 of type Background with 200 events
<HEADER> Factory : Booking method: BDTG
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Building event vectors for type 2 Signal
: Dataset[datasetBkg2] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[datasetBkg2] : create input formulas for tree TreeB2
<HEADER> DataSetFactory : [datasetBkg2] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 100
: Signal -- testing events : 100
: Signal -- training and testing events: 200
: Background -- training events : 100
: Background -- testing events : 100
: Background -- training and testing events: 200
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.427 +0.620 +0.834
: var2: +0.427 +1.000 +0.756 +0.779
: var3: +0.620 +0.756 +1.000 +0.854
: var4: +0.834 +0.779 +0.854 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.689 -0.032 +0.201
: var2: -0.689 +1.000 +0.051 -0.112
: var3: -0.032 +0.051 +1.000 -0.090
: var4: +0.201 -0.112 -0.090 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [datasetBkg2] :
:
<HEADER> Factory : Train all methods
<HEADER> Factory : [datasetBkg2] : Create Transformation "I" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "P" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "G" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.29768 0.91323 [ -2.7150 2.2852 ]
: var2: 0.66936 0.96658 [ -3.0952 3.1113 ]
: var3: 0.30872 1.1413 [ -2.3587 3.9796 ]
: var4: 0.48019 1.1841 [ -2.2913 4.1179 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.22260 1.0000 [ -2.8899 2.2151 ]
: var2: 0.64848 1.0000 [ -2.8577 2.8017 ]
: var3: 0.093503 1.0000 [ -2.1097 2.6394 ]
: var4: 0.29279 1.0000 [ -2.2171 2.6253 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 1.7369e-09 1.5388 [ -5.4229 5.6879 ]
: var2: 2.3402e-09 0.94775 [ -2.3763 2.7626 ]
: var3: 3.1758e-09 0.82690 [ -1.9785 1.7544 ]
: var4: 9.3132e-10 0.72324 [ -1.7482 1.7182 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.17819 1.0000 [ -1.4362 4.6688 ]
: var2: 0.15184 1.0000 [ -1.4113 5.3518 ]
: var3: 0.12791 1.0000 [ -1.8368 5.3543 ]
: var4: 0.099146 1.0000 [ -2.1654 4.5855 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
<HEADER> IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Separation
: -----------------------------------
: 1 : Variable 2 : 3.993e-01
: 2 : Variable 4 : 2.811e-01
: 3 : Variable 3 : 2.659e-01
: 4 : Variable 1 : 1.571e-01
: -----------------------------------
<HEADER> Factory : Train method: BDTG for Classification
:
<HEADER> BDTG : #events: (reweighted) sig: 100 bkg: 100
: #events: (unweighted) sig: 100 bkg: 100
: Training 1000 Decision Trees ... patience please
: Elapsed time for training with 200 events: 0.0996 sec
<HEADER> BDTG : [datasetBkg2] : Evaluation of BDTG on training sample (200 events)
: Elapsed time for evaluation of 200 events: 0.016 sec
: Creating xml weight file: datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml
: Creating standalone class: datasetBkg2/weights/TMVAMultiBkg2_BDTG.class.C
: TMVASignalBackground2.root:/datasetBkg2/Method_BDT/BDTG
<HEADER> Factory : Training finished
:
: Ranking input variables (method specific)...
<HEADER> BDTG : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : var4 : 2.842e-01
: 2 : var1 : 2.630e-01
: 3 : var2 : 2.360e-01
: 4 : var3 : 2.168e-01
: --------------------------------------
<HEADER> Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml
<HEADER> Factory : Test all methods
<HEADER> Factory : Test method: BDTG for Classification performance
:
<HEADER> BDTG : [datasetBkg2] : Evaluation of BDTG on testing sample (200 events)
: Elapsed time for evaluation of 200 events: 0.0108 sec
<HEADER> Factory : Evaluate all methods
<HEADER> Factory : Evaluate classifier: BDTG
:
<HEADER> BDTG : [datasetBkg2] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_BDTG : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.31824 0.87725 [ -1.8821 2.9998 ]
: var2: 0.68634 0.81995 [ -1.2800 2.0015 ]
: var3: 0.28439 1.0366 [ -1.8691 3.0223 ]
: var4: 0.66443 1.1236 [ -1.7755 3.3317 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: datasetBkg2 BDTG : 0.943
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: datasetBkg2 BDTG : 0.000 (0.975) 0.000 (0.979) 0.979 (0.986)
: -------------------------------------------------------------------------------------------------------------------
:
<HEADER> Dataset:datasetBkg2 : Created tree 'TestTree' with 200 events
:
<HEADER> Dataset:datasetBkg2 : Created tree 'TrainTree' with 200 events
:
<HEADER> Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
========================
--- Application & create combined tree
: Booking "BDT method" of type "BDT" from datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml.
: Reading weight file: datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Signal"
<HEADER> DataSetInfo : [Default] : Added class "Background"
: Booked classifier "BDTG" of type: "BDT"
: Booking "BDT method" of type "BDT" from datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml.
: Reading weight file: datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Signal"
<HEADER> DataSetInfo : [Default] : Added class "Background"
: Booked classifier "BDTG" of type: "BDT"
: Booking "BDT method" of type "BDT" from datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml.
: Reading weight file: datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Signal"
<HEADER> DataSetInfo : [Default] : Added class "Background"
: Booked classifier "BDTG" of type: "BDT"
--- Select signal sample
--- End of event loop: Real time 0:00:00, CP time 0.040
--- Select background 0 sample
--- End of event loop: Real time 0:00:00, CP time 0.020
--- Select background 1 sample
--- End of event loop: Real time 0:00:00, CP time 0.030
--- Select background 2 sample
--- End of event loop: Real time 0:00:00, CP time 0.030
--- Created root file: "tmva_example_multiple_backgrounds__applied.root" containing the MVA output histograms
==> Application of readers is done! combined tree created
========================
--- maximize significance
Classifier ranges (defined by the user)
range: -1 1
range: -1 1
range: -1 1
<HEADER> FitterBase : <GeneticFitter> Optimisation, please be patient ... (inaccurate progress timing for GA)
: Elapsed time: 13.3 sec
======================
Efficiency : 0.955
Purity : 0.880184
True positive weights : 191
False positive weights: 26
Signal weights : 200
cutValue[0] = -0.94984;
cutValue[1] = 0.986588;
cutValue[2] = 0.93;