26#ifndef ROOT_TMVA_MethodRuleFit
27#define ROOT_TMVA_MethodRuleFit
221 if (var>vmax)
return 1;
222 if (var<vmin)
return -1;
243 mlog << kWARNING <<
"Option <" << varstr <<
"> " << (dir==1 ?
"above":
"below") <<
" allowed range. Reset to new value = " << var <<
Endl;
261 mlog << kWARNING <<
"Option <" << varstr <<
"> " << (dir==1 ?
"above":
"below") <<
" allowed range. Reset to default value = " << var <<
Endl;
#define ClassDef(name, id)
Describe directory structure in memory.
Class that contains all the data information.
Virtual base Class for all MVA method.
TDirectory * BaseDir() const
returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are sto...
virtual void ReadWeightsFromStream(std::istream &)=0
J Friedman's RuleFit method.
Double_t GetLinQuantile() const
RuleFit * GetRuleFitPtr()
const std::vector< TMVA::Event * > & GetTrainingEvents() const
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns MVA value for given event
Int_t GetRFNendnodes() const
Double_t GetMinFracNEve() const
Double_t GetGDPathEveFrac() const
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
TMVA::DecisionTree::EPruneMethod fPruneMethod
std::vector< DecisionTree * > fForest
Double_t GetGDErrScale() const
Double_t GetGDValidEveFrac() const
Int_t GetRFNrules() const
const TString GetRFWorkDir() const
void MakeClassLinear(std::ostream &) const
print out the linear terms
void GetHelpMessage() const
get help message text
std::vector< TMVA::Event * > fEventSample
void TrainJFRuleFit()
training of rules using Jerome Friedmans implementation
Double_t GetPruneStrength() const
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
RuleFit can handle classification with 2 classes.
void ProcessOptions()
process the options specified by the user
const SeparationBase * GetSeparationBaseConst() const
TMVA::DecisionTree::EPruneMethod GetPruneMethod() const
void ReadWeightsFromStream(std::istream &istr)
read rules from an std::istream
void AddWeightsXMLTo(void *parent) const
add the rules to XML node
void InitEventSample(void)
write all Events from the Tree into a vector of Events, that are more easily manipulated.
void MakeClassRuleCuts(std::ostream &) const
print out the rule cuts
TDirectory * GetMethodBaseDir() const
const std::vector< TMVA::DecisionTree * > & GetForest() const
void InitMonitorNtuple()
initialize the monitoring ntuple
virtual ~MethodRuleFit(void)
destructor
void Init(void)
default initialization
Double_t GetGDPathStep() const
void WriteMonitoringHistosToFile(void) const
write special monitoring histograms to file (here ntuple)
Double_t GetTreeEveFrac() const
void ReadWeightsFromXML(void *wghtnode)
read rules from XML node
SeparationBase * fSepType
const RuleFit * GetRuleFitConstPtr() const
void DeclareOptions()
define the options (their key words) that can be set in the option string know options.
Double_t GetMaxFracNEve() const
Bool_t VerifyRange(MsgLogger &mlog, const char *varstr, T &var, const T &vmin, const T &vmax)
SeparationBase * GetSeparationBase() const
Int_t GetGDNPathSteps() const
const Ranking * CreateRanking()
computes ranking of input variables
void TrainTMVARuleFit()
training of rules using TMVA implementation
ostringstream derivative to redirect and format output
Ranking for variables in method (implementation)
A class implementing various fits of rule ensembles.
An interface to calculate the "SeparationGain" for different separation criteria used in various trai...
A TTree represents a columnar dataset.
create variable transformations
MsgLogger & Endl(MsgLogger &ml)