43template <
typename Architecture_t,
typename Layer_t = VGeneralLayer<Architecture_t>,
44 typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
47 using Matrix_t =
typename Architecture_t::Matrix_t;
48 using Scalar_t =
typename Architecture_t::Scalar_t;
66 void UpdateWeights(
size_t layerIndex, std::vector<Matrix_t> &weights,
const std::vector<Matrix_t> &weightGradients);
69 void UpdateBiases(
size_t layerIndex, std::vector<Matrix_t> &biases,
const std::vector<Matrix_t> &biasGradients);
101template <
typename Architecture_t,
typename Layer_t,
typename DeepNet_t>
104 :
VOptimizer<Architecture_t, Layer_t, DeepNet_t>(learningRate, deepNet), fBeta1(beta1), fBeta2(beta2),
107 std::vector<Layer_t *> &layers = deepNet.
GetLayers();
108 const size_t layersNSlices = layers.size();
115 for (
size_t i = 0; i < layersNSlices; i++) {
120 const size_t weightsNSlices = (layers[i]->GetWeights()).size();
122 for (
size_t j = 0; j < weightsNSlices; j++) {
127 const size_t biasesNSlices = (layers[i]->GetBiases()).size();
132 for (
size_t j = 0; j < biasesNSlices; j++) {
140template <
typename Architecture_t,
typename Layer_t,
typename DeepNet_t>
142 const std::vector<Matrix_t> &weightGradients) ->
void
148 std::vector<Matrix_t> ¤tLayerFirstMomentWeights = this->GetFirstMomentWeightsAt(layerIndex);
149 std::vector<Matrix_t> ¤tLayerSecondMomentWeights = this->GetSecondMomentWeightsAt(layerIndex);
152 Scalar_t alpha = (this->GetLearningRate()) * (
sqrt(1 -
pow(this->GetBeta2(), this->GetGlobalStep()))) /
153 (1 -
pow(this->GetBeta1(), this->GetGlobalStep()));
156 for (
size_t i = 0; i < weights.size(); i++) {
158 Architecture_t::AdamUpdateFirstMom(currentLayerFirstMomentWeights[i], weightGradients[i], this->GetBeta1() );
160 Architecture_t::AdamUpdateSecondMom(currentLayerSecondMomentWeights[i], weightGradients[i], this->GetBeta2() );
162 Architecture_t::AdamUpdate(weights[i], currentLayerFirstMomentWeights[i], currentLayerSecondMomentWeights[i],
163 alpha, this->GetEpsilon() );
168template <
typename Architecture_t,
typename Layer_t,
typename DeepNet_t>
170 const std::vector<Matrix_t> &biasGradients) ->
void
172 std::vector<Matrix_t> ¤tLayerFirstMomentBiases = this->GetFirstMomentBiasesAt(layerIndex);
173 std::vector<Matrix_t> ¤tLayerSecondMomentBiases = this->GetSecondMomentBiasesAt(layerIndex);
176 Scalar_t alpha = (this->GetLearningRate()) * (
sqrt(1 -
pow(this->GetBeta2(), this->GetGlobalStep()))) /
177 (1 -
pow(this->GetBeta1(), this->GetGlobalStep()));
180 for (
size_t i = 0; i < biases.size(); i++) {
182 Architecture_t::AdamUpdateFirstMom(currentLayerFirstMomentBiases[i], biasGradients[i], this->GetBeta1() );
184 Architecture_t::AdamUpdateSecondMom(currentLayerSecondMomentBiases[i], biasGradients[i], this->GetBeta2() );
186 Architecture_t::AdamUpdate(biases[i], currentLayerFirstMomentBiases[i], currentLayerSecondMomentBiases[i],
187 alpha, this->GetEpsilon() );
double pow(double, double)
std::vector< std::vector< Matrix_t > > fSecondMomentWeights
The decaying average of the second moment of the past weight gradients associated with the deep net.
std::vector< Matrix_t > & GetSecondMomentBiasesAt(size_t i)
Scalar_t GetEpsilon() const
typename Architecture_t::Matrix_t Matrix_t
std::vector< Matrix_t > & GetFirstMomentBiasesAt(size_t i)
Scalar_t fBeta2
The Beta2 constant used by the optimizer.
std::vector< std::vector< Matrix_t > > fSecondMomentBiases
The decaying average of the second moment of the past bias gradients associated with the deep net.
std::vector< std::vector< Matrix_t > > & GetSecondMomentBiases()
~TAdam()=default
Destructor.
std::vector< Matrix_t > & GetFirstMomentWeightsAt(size_t i)
std::vector< std::vector< Matrix_t > > & GetSecondMomentWeights()
Scalar_t GetBeta2() const
std::vector< std::vector< Matrix_t > > fFirstMomentBiases
The decaying average of the first moment of the past bias gradients associated with the deep net.
Scalar_t fEpsilon
The Smoothing term used to avoid division by zero.
void UpdateWeights(size_t layerIndex, std::vector< Matrix_t > &weights, const std::vector< Matrix_t > &weightGradients)
Update the weights, given the current weight gradients.
std::vector< std::vector< Matrix_t > > & GetFirstMomentWeights()
TAdam(DeepNet_t &deepNet, Scalar_t learningRate=0.001, Scalar_t beta1=0.9, Scalar_t beta2=0.999, Scalar_t epsilon=1e-7)
Constructor.
std::vector< Matrix_t > & GetSecondMomentWeightsAt(size_t i)
std::vector< std::vector< Matrix_t > > fFirstMomentWeights
The decaying average of the first moment of the past weight gradients associated with the deep net.
Scalar_t fBeta1
The Beta1 constant used by the optimizer.
void UpdateBiases(size_t layerIndex, std::vector< Matrix_t > &biases, const std::vector< Matrix_t > &biasGradients)
Update the biases, given the current bias gradients.
std::vector< std::vector< Matrix_t > > & GetFirstMomentBiases()
typename Architecture_t::Scalar_t Scalar_t
Scalar_t GetBeta1() const
Getters.
std::vector< Layer_t * > & GetLayers()
create variable transformations