Loading [MathJax]/extensions/tex2jax.js
Logo ROOT  
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
multidimSampling.C File Reference

Detailed Description

View in nbviewer Open in SWAN Example of sampling a multi-dim distribution using the DistSampler class NOTE: This tutorial must be run with ACLIC

// function (a 4d gaussian)
#include "TMath.h"
#include "TF2.h"
#include "TStopwatch.h"
#include "Math/Factory.h"
#include "TKDTreeBinning.h"
#include "TTree.h"
#include "TFile.h"
#include "TMatrixDSym.h"
#include "TVectorD.h"
#include "TCanvas.h"
#include <cmath>
// Gauss ND function
// make a class in order to avoid constructing the
// matrices for every call
// This however requires that the code must be compiled with ACLIC
bool debug = false;
// Define the GausND strcture
struct GausND {
TMatrixDSym CovMat;
GausND( int dim ) :
X(TVectorD(dim)),
Mu(TVectorD(dim)),
CovMat(TMatrixDSym(dim) )
{}
double operator() (double *x, double *p) {
// 4 parameters
int dim = X.GetNrows();
int k = 0;
for (int i = 0; i<dim; ++i) { X[i] = x[i] - p[k]; k++; }
for (int i = 0; i<dim; ++i) {
CovMat(i,i) = p[k]*p[k];
k++;
}
for (int i = 0; i<dim; ++i) {
for (int j = i+1; j<dim; ++j) {
// p now are the correlations N(N-1)/2
CovMat(i,j) = p[k]*sqrt(CovMat(i,i)*CovMat(j,j));
CovMat(j,i) = CovMat(i,j);
k++;
}
}
if (debug) {
X.Print();
CovMat.Print();
}
double det = CovMat.Determinant();
if (det <= 0) {
Fatal("GausND","Determinant is <= 0 det = %f",det);
CovMat.Print();
return 0;
}
double norm = std::pow( 2. * TMath::Pi(), dim/2) * sqrt(det);
// compute the gaussians
CovMat.Invert();
double fval = std::exp( - 0.5 * CovMat.Similarity(X) )/ norm;
if (debug) {
std::cout << "det " << det << std::endl;
std::cout << "norm " << norm << std::endl;
std::cout << "fval " << fval << std::endl;
}
return fval;
}
};
// Use the Math namespace
using namespace ROOT::Math;
void multidimSampling() {
const int N = 10000;
/*const int NBin = 1000;*/
const int DIM = 4;
double xmin[] = {-10,-10,-10, -10};
double xmax[] = { 10, 10, 10, 10};
double par0[] = { 1., -1., 2, 0, // the gaussian mu
1, 2, 1, 3, // the sigma
0.5,0.,0.,0.,0.,0.8 }; // the correlation
const int NPAR = DIM + DIM*(DIM+1)/2; // 14 in the 4d case
// generate the sample
GausND gaus4d(4);
TF1 * f = new TF1("functionND",gaus4d,0,1,14);
f->SetParameters(par0);
double x0[] = {0,0,0,0};
// for debugging
if (debug) f->EvalPar(x0,0);
debug = false;
for (int i = 0; i < NPAR; ++i ) {
if (i < DIM) f->SetParName(i, name.Format("mu_%d",i+1) );
else if (i < 2*DIM) f->SetParName(i, name.Format("sig_%d",i-DIM+1) );
else if (i < 2*DIM) f->SetParName(i, name.Format("sig_%d",i-2*DIM+1) );
}
/*ROOT::Math::DistSamplerOptions::SetDefaultSampler("Foam");*/
DistSampler * sampler = Factory::CreateDistSampler();
if (sampler == 0) {
Info("multidimSampling","Default sampler %s is not available try with Foam ",
}
sampler = Factory::CreateDistSampler();
if (sampler == 0) {
Error("multidimSampling","Foam sampler is not available - exit ");
return;
}
sampler->SetFunction(*f,DIM);
sampler->SetRange(xmin,xmax);
bool ret = sampler->Init();
std::vector<double> data1(DIM*N);
double v[DIM];
if (!ret) {
Error("Sampler::Init","Error initializing unuran sampler");
return;
}
// generate the data
w.Start();
for (int i = 0; i < N; ++i) {
sampler->Sample(v);
for (int j = 0; j < DIM; ++j)
data1[N*j + i] = v[j];
}
w.Stop();
w.Print();
// fill tree with data
TFile * file = new TFile("multiDimSampling.root","RECREATE");
double x[DIM];
TTree * t1 = new TTree("t1","Tree from Unuran");
t1->Branch("x",x,"x[4]/D");
for (int i = 0; i < N; ++i) {
for (int j = 0; j < DIM; ++j) {
x[j] = data1[i+N*j];
}
t1->Fill();
}
// plot the data
t1->Draw("x[0]:x[1]:x[2]:x[3]","","candle");
TCanvas * c2 = new TCanvas();
c2->Divide(3,2);
int ic=1;
c2->cd(ic++);
t1->Draw("x[0]:x[1]");
c2->cd(ic++);
t1->Draw("x[0]:x[2]");
c2->cd(ic++);
t1->Draw("x[0]:x[3]");
c2->cd(ic++);
t1->Draw("x[1]:x[2]");
c2->cd(ic++);
t1->Draw("x[1]:x[3]");
c2->cd(ic++);
t1->Draw("x[2]:x[3]");
t1->Write();
file->Close();
}
#define f(i)
Definition: RSha256.hxx:104
void Info(const char *location, const char *msgfmt,...)
void Error(const char *location, const char *msgfmt,...)
void Fatal(const char *location, const char *msgfmt,...)
#define N
char name[80]
Definition: TGX11.cxx:109
float xmin
Definition: THbookFile.cxx:93
float xmax
Definition: THbookFile.cxx:93
double pow(double, double)
double sqrt(double)
double exp(double)
TRObject operator()(const T1 &t1) const
static void SetDefaultSampler(const char *type)
static const std::string & DefaultSampler()
The Canvas class.
Definition: TCanvas.h:27
1-Dim function class
Definition: TF1.h:210
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition: TFile.h:53
void Print(Option_t *name="") const
Print the matrix as a table of elements.
virtual Double_t Determinant() const
TMatrixTSym< Element > & Invert(Double_t *det=0)
Invert the matrix and calculate its determinant Notice that the LU decomposition is used instead of B...
TMatrixTSym< Element > & Similarity(const TMatrixT< Element > &n)
Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb) This is a similarity transform w...
Stopwatch class.
Definition: TStopwatch.h:28
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
Definition: TStopwatch.cxx:58
void Stop()
Stop the stopwatch.
Definition: TStopwatch.cxx:77
void Print(Option_t *option="") const
Print the real and cpu time passed between the start and stop events.
Definition: TStopwatch.cxx:219
Basic string class.
Definition: TString.h:131
A TTree represents a columnar dataset.
Definition: TTree.h:78
Int_t GetNrows() const
Definition: TVectorT.h:75
void Print(Option_t *option="") const
Print the vector as a list of elements.
Definition: TVectorT.cxx:1364
Double_t x[n]
Definition: legend1.C:17
return c2
Definition: legend2.C:14
constexpr Double_t Pi()
Definition: TMath.h:38
Definition: file.py:1
auto * t1
Definition: textangle.C:20
Author
Lorenzo Moneta

Definition in file multidimSampling.C.