62 fDataSetManager(NULL),
65 fNeedsRebuilding(
kTRUE ),
70 fNormalization(
"NONE" ),
72 fTrainingSumSignalWeights(-1),
73 fTrainingSumBackgrWeights(-1),
74 fTestingSumSignalWeights (-1),
75 fTestingSumBackgrWeights (-1),
79 fTargetsForMulticlass(0),
80 fLogger( new
MsgLogger(
"DataSetInfo", kINFO) )
91 for(
UInt_t i=0, iEnd = fClasses.size(); i<iEnd; ++i) {
95 delete fTargetsForMulticlass;
104 if(fDataSet!=0) {
delete fDataSet; fDataSet=0; }
112 fLogger->SetMinType(t);
119 ClassInfo* theClass = GetClassInfo(className);
120 if (theClass)
return theClass;
123 fClasses.push_back(
new ClassInfo(className) );
124 fClasses.back()->
SetNumber(fClasses.size()-1);
128 Log() << kHEADER <<
Form(
"[%s] : ",fName.Data()) <<
"Added class \"" << className <<
"\""<<
Endl;
130 Log() << kDEBUG <<
"\t with internal class number " << fClasses.back()->GetNumber() <<
Endl;
133 if (className ==
"Signal") fSignalClass = fClasses.size()-1;
135 return fClasses.back();
142 for (std::vector<ClassInfo*>::iterator it = fClasses.begin(); it < fClasses.end(); ++it) {
143 if ((*it)->GetName() ==
name)
return (*it);
153 return fClasses.at(cls);
164 for (
UInt_t cls = 0; cls < GetNClasses() ; cls++) {
165 Log() << kINFO <<
Form(
"Dataset[%s] : ",fName.Data()) <<
"Class index : " << cls <<
" name : " << GetClassInfo(cls)->GetName() <<
Endl;
173 return (ev->
GetClass() == fSignalClass);
180 if( !fTargetsForMulticlass ) fTargetsForMulticlass =
new std::vector<Float_t>( GetNClasses() );
182 fTargetsForMulticlass->assign( GetNClasses(), 0.0 );
183 fTargetsForMulticlass->at( ev->
GetClass() ) = 1.0;
184 return fTargetsForMulticlass;
193 for (std::vector<ClassInfo*>::iterator it = fClasses.begin(); it < fClasses.end(); ++it) {
203 ClassInfo* ptr = GetClassInfo(className);
221 fVariables.push_back(
VariableInfo( regexpr, title, unit,
222 fVariables.size()+1, varType, external, min, max, normalized ));
223 fNeedsRebuilding =
kTRUE;
224 return fVariables.back();
232 fNeedsRebuilding =
kTRUE;
233 return fVariables.back();
245 fVariables.reserve(fVariables.size() + size);
246 for (
int i = 0; i < size; ++i) {
249 fVariables.emplace_back(regexpr, newTitle, unit, fVariables.size() + 1, varType, external, min, max, normalized);
251 fVariables.back().SetBit(kIsArrayVariable);
253 fVariables.back().SetInternalName(newVarName);
255 fVarArrays[regexpr] = size;
256 fNeedsRebuilding =
kTRUE;
274 fTargets.size()+1,
type, external, min,
276 fNeedsRebuilding =
kTRUE;
277 return fTargets.back();
285 fNeedsRebuilding =
kTRUE;
286 return fTargets.back();
297 Bool_t normalized,
void* external )
301 fSpectators.push_back(
VariableInfo( regexpr, title, unit,
302 fSpectators.size()+1,
type, external, min, max, normalized ));
303 fNeedsRebuilding =
kTRUE;
304 return fSpectators.back();
312 fNeedsRebuilding =
kTRUE;
313 return fSpectators.back();
321 for (
UInt_t ivar=0; ivar<GetNVariables(); ivar++)
322 if (var == GetVariableInfo(ivar).GetInternalName())
return ivar;
324 for (
UInt_t ivar=0; ivar<GetNVariables(); ivar++)
325 Log() << kINFO <<
Form(
"Dataset[%s] : ",fName.Data()) << GetVariableInfo(ivar).GetInternalName() <<
Endl;
327 Log() << kFATAL <<
Form(
"Dataset[%s] : ",fName.Data()) <<
"<FindVarIndex> Variable \'" << var <<
"\' not found." <<
Endl;
339 if (className !=
"") {
345 if (fClasses.empty()) {
346 Log() << kWARNING <<
Form(
"Dataset[%s] : ",fName.Data()) <<
"No classes registered yet, cannot specify weight expression!" <<
Endl;
348 for (std::vector<ClassInfo*>::iterator it = fClasses.begin(); it < fClasses.end(); ++it) {
349 (*it)->SetWeight( expr );
358 GetClassInfo(className)->SetCorrelationMatrix(matrix);
366 if (className ==
"") {
367 for (std::vector<ClassInfo*>::iterator it = fClasses.begin(); it < fClasses.end(); ++it) {
368 (*it)->SetCut( cut );
382 if (className ==
"") {
383 for (std::vector<ClassInfo*>::iterator it = fClasses.begin(); it < fClasses.end(); ++it) {
384 const TCut& oldCut = (*it)->GetCut();
385 (*it)->SetCut( oldCut+cut );
399 std::vector<TString> vNames;
400 std::vector<TMVA::VariableInfo>::const_iterator viIt = GetVariableInfos().begin();
401 for(;viIt != GetVariableInfos().end(); ++viIt) vNames.push_back( (*viIt).GetInternalName() );
414 <<
"Correlation matrix (" << className <<
"):" <<
Endl;
426 const UInt_t nvar = GetNVariables();
431 for (
UInt_t ivar=0; ivar<nvar; ivar++) {
432 for (
UInt_t jvar=0; jvar<nvar; jvar++) {
433 (*tm)(ivar, jvar) = (*
m)(ivar,jvar);
440 for (
UInt_t ivar=0; ivar<nvar; ivar++) {
448 for (
UInt_t ibin=1; ibin<=nvar; ibin++) {
449 for (
UInt_t jbin=1; jbin<=nvar; jbin++) {
455 const Float_t labelSize = 0.055;
476 Log() << kDEBUG <<
Form(
"Dataset[%s] : ",fName.Data()) <<
"Created correlation matrix as 2D histogram: " << h2->
GetName() <<
Endl;
486 if (fDataSet==0 || fNeedsRebuilding) {
487 if(fDataSet!=0) ClearDataSet();
489 if( !fDataSetManager )
490 Log() << kFATAL <<
Form(
"Dataset[%s] : ",fName.Data()) <<
"DataSetManager has not been set in DataSetInfo (GetDataSet() )." <<
Endl;
491 fDataSet = fDataSetManager->CreateDataSet(GetName());
493 fNeedsRebuilding =
kFALSE;
503 return fSpectators.size();
505 for(std::vector<VariableInfo>::const_iterator spit=fSpectators.begin(); spit!=fSpectators.end(); ++spit) {
506 if(spit->GetVarType()!=
'C') nsp++;
516 for (
UInt_t cl = 0; cl < GetNClasses(); cl++) {
517 if (
TString(GetClassInfo(cl)->GetName()).
Length() > maxL) maxL =
TString(GetClassInfo(cl)->GetName()).Length();
528 for (
UInt_t i = 0; i < GetNVariables(); i++) {
529 if (
TString(GetVariableInfo(i).GetExpression()).
Length() > maxL) maxL =
TString(GetVariableInfo(i).GetExpression()).Length();
540 for (
UInt_t i = 0; i < GetNTargets(); i++) {
541 if (
TString(GetTargetInfo(i).GetExpression()).
Length() > maxL) maxL =
TString(GetTargetInfo(i).GetExpression()).Length();
550 if (fTrainingSumSignalWeights<0)
Log() << kFATAL <<
Form(
"Dataset[%s] : ",fName.Data()) <<
" asking for the sum of training signal event weights which is not initialized yet" <<
Endl;
551 return fTrainingSumSignalWeights;
557 if (fTrainingSumBackgrWeights<0)
Log() << kFATAL <<
Form(
"Dataset[%s] : ",fName.Data()) <<
" asking for the sum of training backgr event weights which is not initialized yet" <<
Endl;
558 return fTrainingSumBackgrWeights;
564 if (fTestingSumSignalWeights<0)
Log() << kFATAL <<
Form(
"Dataset[%s] : ",fName.Data()) <<
" asking for the sum of testing signal event weights which is not initialized yet" <<
Endl;
565 return fTestingSumSignalWeights ;
571 if (fTestingSumBackgrWeights<0)
Log() << kFATAL <<
Form(
"Dataset[%s] : ",fName.Data()) <<
" asking for the sum of testing backgr event weights which is not initialized yet" <<
Endl;
572 return fTestingSumBackgrWeights ;
TMatrixT< Float_t > TMatrixF
char * Form(const char *fmt,...)
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels.
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
virtual void SetBinLabel(Int_t bin, const char *label)
Set label for bin.
A specialized string object used for TTree selections.
virtual void SetLabelOffset(Float_t offset=0.005, Option_t *axis="X")
Set offset between axis and axis' labels.
virtual void LabelsOption(Option_t *option="h", Option_t *axis="X")
Set option(s) to draw axis with labels.
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
virtual void SetMaximum(Double_t maximum=-1111)
virtual void SetMinimum(Double_t minimum=-1111)
virtual void SetNameTitle(const char *name, const char *title)
Change the name and title of this histogram.
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
2-D histogram with a float per channel (see TH1 documentation)}
Service class for 2-Dim histogram classes.
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content.
Class that contains all the information of a class.
const TMatrixD * GetCorrelationMatrix() const
const TCut & GetCut() const
void SetCut(const TCut &cut)
void SetWeight(const TString &weight)
void SetNumber(const UInt_t index)
UInt_t GetNSpectators(bool all=kTRUE) const
ClassInfo * AddClass(const TString &className)
const TMatrixD * CorrelationMatrix(const TString &className) const
Int_t GetTargetNameMaxLength() const
virtual ~DataSetInfo()
destructor
Double_t GetTestingSumBackgrWeights()
void SetMsgType(EMsgType t) const
void AddVariablesArray(const TString &expression, Int_t size, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0, char type='F', Bool_t normalized=kTRUE, void *external=0)
add an array of variables identified by an expression corresponding to an array entry in the tree
VariableInfo & AddTarget(const TString &expression, const TString &title, const TString &unit, Double_t min, Double_t max, Bool_t normalized=kTRUE, void *external=0)
add a variable (can be a complex expression) to the set of variables used in the MV analysis
DataSet * GetDataSet() const
returns data set
DataSetInfo(const TString &name="Default")
constructor
TH2 * CreateCorrelationMatrixHist(const TMatrixD *m, const TString &hName, const TString &hTitle) const
VariableInfo & AddSpectator(const TString &expression, const TString &title, const TString &unit, Double_t min, Double_t max, char type='F', Bool_t normalized=kTRUE, void *external=0)
add a spectator (can be a complex expression) to the set of spectator variables used in the MV analys...
std::vector< TString > GetListOfVariables() const
returns list of variables
ClassInfo * GetClassInfo(Int_t clNum) const
Double_t GetTrainingSumSignalWeights()
void PrintClasses() const
Int_t GetClassNameMaxLength() const
Double_t GetTrainingSumBackgrWeights()
void PrintCorrelationMatrix(const TString &className)
calculates the correlation matrices for signal and background, prints them to standard output,...
void SetCut(const TCut &cut, const TString &className)
set the cut for the classes
Double_t GetTestingSumSignalWeights()
Int_t FindVarIndex(const TString &) const
find variable by name
VariableInfo & AddVariable(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0, char varType='F', Bool_t normalized=kTRUE, void *external=0)
add a variable (can be a complex expression) to the set of variables used in the MV analysis
Int_t GetVariableNameMaxLength() const
Bool_t IsSignal(const Event *ev) const
void SetWeightExpression(const TString &exp, const TString &className="")
set the weight expressions for the classes if class name is specified, set only for this class if cla...
void AddCut(const TCut &cut, const TString &className)
set the cut for the classes
std::vector< Float_t > * GetTargetsForMulticlass(const Event *ev)
void SetCorrelationMatrix(const TString &className, TMatrixD *matrix)
void ClearDataSet() const
Class that contains all the data information.
ostringstream derivative to redirect and format output
Class for type info of MVA input variable.
virtual const char * GetName() const
Returns name of object.
Mother of all ROOT objects.
TString & ReplaceAll(const TString &s1, const TString &s2)
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
void AddClass(const char *cname, Version_t id, const std::type_info &info, DictFuncPtr_t dict, Int_t pragmabits)
Global function called by the ctor of a class's init class (see the ClassImp macro).
MsgLogger & Endl(MsgLogger &ml)