29#ifndef ROOT_TMVA_DataSet
30#define ROOT_TMVA_DataSet
154 std::vector< std::map< TString, Results* > >
fResults;
207 switch (fCurrentTreeIdx) {
220 if (fSampling.size() >
UInt_t(treeIdx) && fSampling.at(treeIdx)) {
221 return fSamplingSelected.at(treeIdx).size();
223 return GetEventCollection(
type).size();
229 return fEventCollection.at(TreeIndex(
type));
#define ClassDef(name, id)
Class that contains all the data information.
Class that contains all the data information.
void DivideTrainingSet(UInt_t blockNum)
divide training set
void AddEvent(Event *, Types::ETreeType)
add event to event list after which the event is owned by the dataset
Long64_t GetNEvtSigTest()
return number of signal test events in dataset
std::vector< Char_t > fSampling
std::vector< std::vector< std::pair< Float_t, Long64_t > > > fSamplingEventList
std::vector< Float_t > fSamplingWeight
UInt_t GetNTargets() const
access the number of targets through the datasetinfo
void ClearNClassEvents(Int_t type)
Long64_t GetNEvtSigTrain()
return number of signal training events in dataset
void EventResult(Bool_t successful, Long64_t evtNumber=-1)
increase the importance sampling weight of the event when not successful and decrease it when success...
std::vector< std::map< TString, Results * > > fResults
void SetEventCollection(std::vector< Event * > *, Types::ETreeType, Bool_t deleteEvents=true)
Sets the event collection (by DataSetFactory)
Long64_t GetNTestEvents() const
TTree * GetTree(Types::ETreeType type)
create the test/trainings tree with all the variables, the weights, the classes, the targets,...
const Event * GetEvent() const
Types::ETreeType GetCurrentType() const
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
Results * GetResults(const TString &, Types::ETreeType type, Types::EAnalysisType analysistype)
Long64_t GetNClassEvents(Int_t type, UInt_t classNumber)
Long64_t fCurrentEventIdx
std::vector< Char_t > fBlockBelongToTraining
Long64_t GetNTrainingEvents() const
UInt_t GetNSpectators() const
access the number of targets through the datasetinfo
void MoveTrainingBlock(Int_t blockInd, Types::ETreeType dest, Bool_t applyChanges=kTRUE)
move training block
UInt_t GetNVariables() const
access the number of variables through the datasetinfo
const Event * GetTestEvent(Long64_t ievt) const
std::vector< Int_t > fSamplingNEvents
std::vector< std::vector< std::pair< Float_t, Long64_t > > > fSamplingSelected
virtual ~DataSet()
destructor
std::vector< std::vector< Long64_t > > fClassEvents
void DeleteAllResults(Types::ETreeType type, Types::EAnalysisType analysistype)
Deletes all results currently in the dataset.
MsgLogger & Log() const
message logger
void ApplyTrainingBlockDivision()
void InitSampling(Float_t fraction, Float_t weight, UInt_t seed=0)
initialize random or importance sampling
const Event * GetEvent(Long64_t ievt, Types::ETreeType type) const
UInt_t TreeIndex(Types::ETreeType type) const
void IncrementNClassEvents(Int_t type, UInt_t classNumber)
void DeleteResults(const TString &, Types::ETreeType type, Types::EAnalysisType analysistype)
delete the results stored for this particular Method instance.
Bool_t fHasNegativeEventWeights
Long64_t fTrainingBlockSize
void CreateSampling() const
create an event sampling (random or importance sampling)
const TTree * GetEventCollectionAsTree()
std::vector< std::vector< Event * > > fEventCollection
void SetCurrentType(Types::ETreeType type) const
TRandom3 * fSamplingRandom
const Event * GetEvent(Long64_t ievt) const
const std::vector< Event * > & GetEventCollection(Types::ETreeType type=Types::kMaxTreeType) const
void SetCurrentEvent(Long64_t ievt) const
Long64_t GetNEvtBkgdTrain()
return number of background training events in dataset
void DestroyCollection(Types::ETreeType type, Bool_t deleteEvents)
destroys the event collection (events + vector)
void ApplyTrainingSetDivision()
apply division of data set
const Event * GetTrainingEvent(Long64_t ievt) const
Bool_t HasNegativeEventWeights() const
UInt_t fCurrentTreeIdx
[train/test/...][method-identifier]
Long64_t GetNEvtBkgdTest()
return number of background test events in dataset
ostringstream derivative to redirect and format output
Class that is the base-class for a vector of result.
The TNamed class is the base class for all named ROOT classes.
Random number generator class based on M.
A TTree represents a columnar dataset.
create variable transformations
#define dest(otri, vertexptr)