Logo ROOT  
Reference Guide
LogLikelihoodFCN.h
Go to the documentation of this file.
1// @(#)root/mathcore:$Id$
2// Author: L. Moneta Fri Aug 17 14:29:24 2007
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2007 LCG ROOT Math Team, CERN/PH-SFT *
7 * *
8 * *
9 **********************************************************************/
10
11// Header file for class LogLikelihoodFCN
12
13#ifndef ROOT_Fit_LogLikelihoodFCN
14#define ROOT_Fit_LogLikelihoodFCN
15
16#include "Fit/BasicFCN.h"
17
18#include "Math/IParamFunction.h"
19
20#include "Fit/UnBinData.h"
21
22#include "Fit/FitUtil.h"
23
24#include <memory>
25
26namespace ROOT {
27
28 namespace Fit {
29
30
31//___________________________________________________________________________________
32/**
33 LogLikelihoodFCN class
34 for likelihood fits
35
36 it is template to distinguish gradient and non-gradient case
37
38 @ingroup FitMethodFunc
39*/
40template<class DerivFunType,class ModelFunType = ROOT::Math::IParamMultiFunction>
41class LogLikelihoodFCN : public BasicFCN<DerivFunType,ModelFunType,UnBinData> {
42
43public:
44
45 typedef typename ModelFunType::BackendType T;
47
48 typedef ::ROOT::Math::BasicFitMethodFunction<DerivFunType> BaseObjFunction;
50
51 typedef ::ROOT::Math::IParamMultiFunctionTempl<T> IModelFunction;
53
54
55 /**
56 Constructor from unbin data set and model function (pdf)
57 */
58 LogLikelihoodFCN (const std::shared_ptr<UnBinData> & data, const std::shared_ptr<IModelFunction> & func, int weight = 0, bool extended = false, const ::ROOT::Fit::ExecutionPolicy &executionPolicy = ::ROOT::Fit::ExecutionPolicy::kSerial) :
59 BaseFCN( data, func),
60 fIsExtended(extended),
61 fWeight(weight),
62 fNEffPoints(0),
63 fGrad ( std::vector<double> ( func->NPar() ) ),
64 fExecutionPolicy(executionPolicy)
65 {}
66
67 /**
68 Constructor from unbin data set and model function (pdf) for object managed by users
69 */
70 LogLikelihoodFCN (const UnBinData & data, const IModelFunction & func, int weight = 0, bool extended = false, const ::ROOT::Fit::ExecutionPolicy &executionPolicy = ::ROOT::Fit::ExecutionPolicy::kSerial) :
71 BaseFCN(std::shared_ptr<UnBinData>(const_cast<UnBinData*>(&data), DummyDeleter<UnBinData>()), std::shared_ptr<IModelFunction>(dynamic_cast<IModelFunction*>(func.Clone() ) ) ),
72 fIsExtended(extended),
73 fWeight(weight),
74 fNEffPoints(0),
75 fGrad ( std::vector<double> ( func.NPar() ) ),
76 fExecutionPolicy(executionPolicy)
77 {}
78
79 /**
80 Destructor (no operations)
81 */
82 virtual ~LogLikelihoodFCN () {}
83
84 /**
85 Copy constructor
86 */
90 fWeight( f.fWeight ),
92 fGrad( f.fGrad),
94 { }
95
96
97 /**
98 Assignment operator
99 */
101 SetData(rhs.DataPtr() );
104 fGrad = rhs.fGrad;
106 fWeight = rhs.fWeight;
108 return *this;
109 }
110
111
112 /// clone the function (need to return Base for Windows)
113 virtual BaseFunction * Clone() const { return new LogLikelihoodFCN(*this); }
114
115
116 //using BaseObjFunction::operator();
117
118 // effective points used in the fit
119 virtual unsigned int NFitPoints() const { return fNEffPoints; }
120
121 /// i-th likelihood contribution and its gradient
122 virtual double DataElement(const double * x, unsigned int i, double * g) const {
123 if (i==0) this->UpdateNCalls();
125 }
126
127 // need to be virtual to be instantited
128 virtual void Gradient(const double *x, double *g) const {
129 // evaluate the chi2 gradient
132 }
133
134 /// get type of fit method function
136
137
138 // Use sum of the weight squared in evaluating the likelihood
139 // (this is needed for calculating the errors)
140 void UseSumOfWeightSquare(bool on = true) {
141 if (fWeight == 0) return; // do nothing if it was not weighted
142 if (on) fWeight = 2;
143 else fWeight = 1;
144 }
145
146
147
148protected:
149
150
151private:
152
153 /**
154 Evaluation of the function (required by interface)
155 */
156 virtual double DoEval (const double * x) const {
157 this->UpdateNCalls();
159 }
160
161 // for derivatives
162 virtual double DoDerivative(const double * x, unsigned int icoord ) const {
163 Gradient(x, &fGrad[0]);
164 return fGrad[icoord];
165 }
166
167
168 //data member
169 bool fIsExtended; // flag for indicating if likelihood is extended
170 int fWeight; // flag to indicate if needs to evaluate using weight or weight squared (default weight = 0)
171
172
173 mutable unsigned int fNEffPoints; // number of effective points used in the fit
174
175 mutable std::vector<double> fGrad; // for derivatives
176
178};
179 // define useful typedef's
180 // using LogLikelihoodFunction_v = LogLikelihoodFCN<ROOT::Math::IMultiGenFunction, ROOT::Math::IParametricFunctionMultiDimTempl<T>>;
183
184 } // end namespace Fit
185
186} // end namespace ROOT
187
188
189#endif /* ROOT_Fit_LogLikelihoodFCN */
#define f(i)
Definition: RSha256.hxx:104
#define g(i)
Definition: RSha256.hxx:105
BasicFCN class: base class for the objective functions used in the fits It has a reference to the dat...
Definition: BasicFCN.h:40
void SetData(const std::shared_ptr< UnBinData > &data)
Set the data pointer.
Definition: BasicFCN.h:88
std::shared_ptr< IModelFunction > ModelFunctionPtr() const
access to function pointer
Definition: BasicFCN.h:80
void SetModelFunction(const std::shared_ptr< IModelFunction > &func)
Set the function pointer.
Definition: BasicFCN.h:91
virtual const DataType & Data() const
access to const reference to the data
Definition: BasicFCN.h:71
std::shared_ptr< UnBinData > DataPtr() const
access to data pointer
Definition: BasicFCN.h:74
virtual const IModelFunction & ModelFunction() const
access to const reference to the model function
Definition: BasicFCN.h:77
LogLikelihoodFCN class for likelihood fits.
BaseObjFunction::BaseFunction BaseFunction
virtual BaseObjFunction::Type_t Type() const
get type of fit method function
LogLikelihoodFCN & operator=(const LogLikelihoodFCN &rhs)
Assignment operator.
virtual double DoDerivative(const double *x, unsigned int icoord) const
::ROOT::Math::IParamMultiFunctionTempl< T > IModelFunction
LogLikelihoodFCN(const LogLikelihoodFCN &f)
Copy constructor.
BasicFCN< DerivFunType, ModelFunType, UnBinData > BaseFCN
ModelFunType::BackendType T
virtual double DataElement(const double *x, unsigned int i, double *g) const
i-th likelihood contribution and its gradient
void UseSumOfWeightSquare(bool on=true)
::ROOT::Fit::ExecutionPolicy fExecutionPolicy
virtual void Gradient(const double *x, double *g) const
::ROOT::Math::BasicFitMethodFunction< DerivFunType > BaseObjFunction
virtual BaseFunction * Clone() const
clone the function (need to return Base for Windows)
LogLikelihoodFCN(const UnBinData &data, const IModelFunction &func, int weight=0, bool extended=false, const ::ROOT::Fit::ExecutionPolicy &executionPolicy=::ROOT::Fit::ExecutionPolicy::kSerial)
Constructor from unbin data set and model function (pdf) for object managed by users.
virtual ~LogLikelihoodFCN()
Destructor (no operations)
virtual unsigned int NFitPoints() const
LogLikelihoodFCN(const std::shared_ptr< UnBinData > &data, const std::shared_ptr< IModelFunction > &func, int weight=0, bool extended=false, const ::ROOT::Fit::ExecutionPolicy &executionPolicy=::ROOT::Fit::ExecutionPolicy::kSerial)
Constructor from unbin data set and model function (pdf)
std::vector< double > fGrad
BaseObjFunction::Type_t Type_t
virtual double DoEval(const double *x) const
Evaluation of the function (required by interface)
Class describing the unbinned data sets (just x coordinates values) of any dimensions.
Definition: UnBinData.h:42
Type_t
enumeration specyfing the possible fit method types
virtual void UpdateNCalls() const
update number of calls
IParamFunction interface (abstract class) describing multi-dimensional parameteric functions It is a ...
Double_t x[n]
Definition: legend1.C:17
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
Definition: HFitImpl.cxx:134
double EvaluatePdf(const IModelFunction &func, const UnBinData &data, const double *x, unsigned int ipoint, double *g=0)
evaluate the pdf contribution to the LogL given a model function and the BinPoint data.
Definition: FitUtil.cxx:860
LogLikelihoodFCN< ROOT::Math::IMultiGenFunction, ROOT::Math::IParamMultiFunction > LogLikelihoodFunction
LogLikelihoodFCN< ROOT::Math::IMultiGradFunction, ROOT::Math::IParamMultiFunction > LogLikelihoodGradFunction
VSD Structures.
Definition: StringConv.hxx:21
static double EvalLogL(const IModelFunctionTempl< double > &func, const UnBinData &data, const double *p, int iWeight, bool extended, unsigned int &nPoints, ::ROOT::Fit::ExecutionPolicy executionPolicy, unsigned nChunks=0)
Definition: FitUtil.h:1407
static void EvalLogLGradient(const IModelFunctionTempl< double > &func, const UnBinData &data, const double *p, double *g, unsigned int &nPoints, ::ROOT::Fit::ExecutionPolicy executionPolicy=::ROOT::Fit::ExecutionPolicy::kSerial, unsigned nChunks=0)
Definition: FitUtil.h:1452