Logo ROOT  
Reference Guide
ApplicationClassificationKeras.py File Reference

Namespaces

namespace  ApplicationClassificationKeras
 

Detailed Description

View in nbviewer Open in SWAN This tutorial shows how to apply a trained model to new data.

from ROOT import TMVA, TFile, TString
from array import array
from subprocess import call
from os.path import isfile
# Setup TMVA
reader = TMVA.Reader("Color:!Silent")
# Load data
if not isfile('tmva_class_example.root'):
call(['curl', '-O', 'http://root.cern.ch/files/tmva_class_example.root'])
data = TFile.Open('tmva_class_example.root')
signal = data.Get('TreeS')
background = data.Get('TreeB')
branches = {}
for branch in signal.GetListOfBranches():
branchName = branch.GetName()
branches[branchName] = array('f', [-999])
reader.AddVariable(branchName, branches[branchName])
signal.SetBranchAddress(branchName, branches[branchName])
background.SetBranchAddress(branchName, branches[branchName])
# Book methods
reader.BookMVA('PyKeras', TString('dataset/weights/TMVAClassification_PyKeras.weights.xml'))
# Print some example classifications
print('Some signal example classifications:')
for i in range(20):
signal.GetEntry(i)
print(reader.EvaluateMVA('PyKeras'))
print('')
print('Some background example classifications:')
for i in range(20):
background.GetEntry(i)
print(reader.EvaluateMVA('PyKeras'))
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition: TFile.cxx:3923
static void PyInitialize()
Initialize Python interpreter.
The Reader class serves to use the MVAs in a specific analysis context.
Definition: Reader.h:63
static Tools & Instance()
Definition: Tools.cxx:75
Basic string class.
Definition: TString.h:131
Date
2017
Author
TMVA Team

Definition in file ApplicationClassificationKeras.py.