Logo ROOT  
Reference Guide
ApplicationClassificationKeras.py
Go to the documentation of this file.
1#!/usr/bin/env python
2## \file
3## \ingroup tutorial_tmva_keras
4## \notebook -nodraw
5## This tutorial shows how to apply a trained model to new data.
6##
7## \macro_code
8##
9## \date 2017
10## \author TMVA Team
11
12from ROOT import TMVA, TFile, TString
13from array import array
14from subprocess import call
15from os.path import isfile
16
17# Setup TMVA
20reader = TMVA.Reader("Color:!Silent")
21
22# Load data
23if not isfile('tmva_class_example.root'):
24 call(['curl', '-O', 'http://root.cern.ch/files/tmva_class_example.root'])
25
26data = TFile.Open('tmva_class_example.root')
27signal = data.Get('TreeS')
28background = data.Get('TreeB')
29
30branches = {}
31for branch in signal.GetListOfBranches():
32 branchName = branch.GetName()
33 branches[branchName] = array('f', [-999])
34 reader.AddVariable(branchName, branches[branchName])
35 signal.SetBranchAddress(branchName, branches[branchName])
36 background.SetBranchAddress(branchName, branches[branchName])
37
38# Book methods
39reader.BookMVA('PyKeras', TString('dataset/weights/TMVAClassification_PyKeras.weights.xml'))
40
41# Print some example classifications
42print('Some signal example classifications:')
43for i in range(20):
44 signal.GetEntry(i)
45 print(reader.EvaluateMVA('PyKeras'))
46print('')
47
48print('Some background example classifications:')
49for i in range(20):
50 background.GetEntry(i)
51 print(reader.EvaluateMVA('PyKeras'))
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition: TFile.cxx:3923
static void PyInitialize()
Initialize Python interpreter.
The Reader class serves to use the MVAs in a specific analysis context.
Definition: Reader.h:63
static Tools & Instance()
Definition: Tools.cxx:75
Basic string class.
Definition: TString.h:131