63 TH1D *
h1 =
new TH1D(
"h1G",
"gaussian distribution from Unuran",100,-10,10);
64 TH1D * h2 =
new TH1D(
"h2G",
"gaussian distribution from TRandom",100,-10,10);
66 cout <<
"\nTest using UNURAN string API \n\n";
70 if (! unr.
Init(
"normal()",
"method=arou") ) {
71 cout <<
"Error initializing unuran" << endl;
79 for (
int i = 0; i <
n; ++i) {
85 cout <<
"Time using Unuran method " << unr.
MethodName() <<
"\t=\t " << w.
CpuTime() << endl;
90 for (
int i = 0; i <
n; ++i) {
96 cout <<
"Time using TRandom::Gaus \t=\t " << w.
CpuTime() << endl;
108double distr(
double *
x,
double *p) {
112double cdf(
double *
x,
double *p) {
119 cout <<
"\nTest 1D Continous distributions\n\n";
121 TH1D *
h1 =
new TH1D(
"h1BW",
"Breit-Wigner distribution from Unuran",100,-10,10);
122 TH1D * h2 =
new TH1D(
"h2BW",
"Breit-Wigner distribution from GetRandom",100,-10,10);
126 TF1 *
f =
new TF1(
"distrFunc",distr,-10,10,2);
127 double par[2] = {1,0};
128 f->SetParameters(par);
130 TF1 *
fc =
new TF1(
"cdfFunc",cdf,-10,10,2);
131 fc->SetParameters(par);
141 std::string method =
"tdr";
150 cout <<
"Error initializing unuran" << endl;
160 for (
int i = 0; i <
n; ++i) {
166 cout <<
"Time using Unuran method " << unr.
MethodName() <<
"\t=\t " << w.
CpuTime() << endl;
169 for (
int i = 0; i <
n; ++i) {
170 double x =
f->GetRandom();
175 cout <<
"Time using TF1::GetRandom() \t=\t " << w.
CpuTime() << endl;
183 std::cout <<
" chi2 test of UNURAN vs GetRandom generated histograms: " << std::endl;
189double gaus3d(
double *
x,
double *p) {
191 double sigma_x = p[0];
192 double sigma_y = p[1];
193 double sigma_z = p[2];
195 double u =
x[0] / sigma_x ;
196 double v =
x[1] / sigma_y ;
197 double w =
x[2] / sigma_z ;
198 double c = 1 - rho*rho ;
199 double result = (1 / (2 *
TMath::Pi() * sigma_x * sigma_y * sigma_z *
sqrt(
c)))
200 *
exp (-(u * u - 2 * rho * u *
v +
v *
v + w*w) / (2 *
c));
205void testDistrMultiDim() {
207 cout <<
"\nTest Multidimensional distributions\n\n";
209 TH3D *
h1 =
new TH3D(
"h13D",
"gaussian 3D distribution from Unuran",50,-10,10,50,-10,10,50,-10,10);
210 TH3D * h2 =
new TH3D(
"h23D",
"gaussian 3D distribution from GetRandom",50,-10,10,50,-10,10,50,-10,10);
214 TF3 *
f =
new TF3(
"g3d",gaus3d,-10,10,-10,10,-10,10,3);
215 double par[3] = {2,2,0.5};
216 f->SetParameters(par);
225 std::string method =
"hitro";
227 cout <<
"Error initializing unuran" << endl;
235 for (
int i = 0; i < NGEN; ++i) {
241 cout <<
"Time using Unuran method " << unr.
MethodName() <<
"\t=\t\t " << w.
CpuTime() << endl;
255 for (
int i = 0; i < NGEN; ++i) {
256 f->GetRandom3(
x[0],
x[1],
x[2]);
261 cout <<
"Time using TF1::GetRandom \t\t=\t " << w.
CpuTime() << endl;
267 std::cout <<
" chi2 test of UNURAN vs GetRandom generated histograms: " << std::endl;
275double poisson(
double *
x,
double * p) {
279void testDiscDistr() {
281 cout <<
"\nTest Discrete distributions\n\n";
283 TH1D *
h1 =
new TH1D(
"h1PS",
"Unuran Poisson prob",20,0,20);
284 TH1D * h2 =
new TH1D(
"h2PS",
"Poisson dist from TRandom",20,0,20);
288 TF1 *
f =
new TF1(
"fps",poisson,1,0,1);
289 f->SetParameter(0,mu);
297 bool ret = unr.
Init(dist2,
"dari");
304 for (
int i = 0; i <
n; ++i) {
310 cout <<
"Time using Unuran method " << unr.
MethodName() <<
"\t=\t\t " << w.
CpuTime() << endl;
313 for (
int i = 0; i <
n; ++i) {
316 cout <<
"Time using TRandom::Poisson " <<
"\t=\t\t " << w.
CpuTime() << endl;
323 std::cout <<
" chi2 test of UNURAN vs TRandom generated histograms: " << std::endl;
335 cout <<
"\nTest Empirical distributions using smoothing\n\n";
339 const int Ndata = 1000;
341 for (
int i = 0; i < Ndata; ++i) {
348 TH1D * h0 =
new TH1D(
"h0Ref",
"Starting data",100,-10,10);
349 TH1D *
h1 =
new TH1D(
"h1Unr",
"Unuran unbin Generated data",100,-10,10);
350 TH1D * h1b =
new TH1D(
"h1bUnr",
"Unuran bin Generated data",100,-10,10);
351 TH1D * h2 =
new TH1D(
"h2GR",
"Data from TH1::GetRandom",100,-10,10);
364 for (
int i = 0; i <
n; ++i) {
369 cout <<
"Time using Unuran unbin " << unr.
MethodName() <<
"\t=\t\t " << w.
CpuTime() << endl;
374 if (!unr.
Init(binDist))
return;
375 for (
int i = 0; i <
n; ++i) {
379 cout <<
"Time using Unuran bin " << unr.
MethodName() <<
"\t=\t\t " << w.
CpuTime() << endl;
382 for (
int i = 0; i <
n; ++i) {
385 cout <<
"Time using TH1::GetRandom " <<
"\t=\t\t " << w.
CpuTime() << endl;
410 c1 =
new TCanvas(
"c1_unuranMulti",
"Multidimensional distribution",10,10,1000,1000);
R__EXTERN TRandom * gRandom
R__EXTERN TStyle * gStyle
R__EXTERN TSystem * gSystem
static struct mg_connection * fc(struct mg_context *ctx)
virtual void SetLineColor(Color_t lcolor)
Set the line color.
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
A 3-Dim function with parameters.
1-D histogram with a double per channel (see TH1 documentation)}
virtual Double_t GetRandom() const
Return a random number distributed according the histogram bin contents.
virtual Double_t Chi2Test(const TH1 *h2, Option_t *option="UU", Double_t *res=0) const
test for comparing weighted and unweighted histograms
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual void Draw(Option_t *option="")
Draw this histogram with options.
virtual void FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Fill this histogram with an array x and weights w.
3-D histogram with a double per channel (see TH1 documentation)}
Int_t Fill(Double_t)
Invalid Fill method.
Random number generator class based on the maximally quidistributed combined Tausworthe generator by ...
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
virtual Int_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
Double_t CpuTime()
Stop the stopwatch (if it is running) and return the cputime (in seconds) passed between the start an...
void Stop()
Stop the stopwatch.
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
virtual int Load(const char *module, const char *entry="", Bool_t system=kFALSE)
Load a shared library.
TUnuranContDist class describing one dimensional continuous distribution.
TUnuranDiscrDist class for one dimensional discrete distribution.
void SetMode(int mode)
set the mode of the distribution (location of maximum probability)
void SetProbSum(double sum)
set the value of the sum of the probabilities in the given domain
TUnuranEmpDist class for describing empiral distributions.
TUnuranMultiContDist class describing multi dimensional continuous distributions.
int SampleDiscr()
Sample discrete distributions User is responsible for having previously correctly initialized with TU...
const std::string & MethodName() const
used Unuran method
bool SampleMulti(double *x)
Sample multidimensional distributions User is responsible for having previously correctly initialized...
bool Init(const std::string &distr, const std::string &method)
initialize with Unuran string interface
double Sample()
Sample 1D distribution User is responsible for having previously correctly initialized with TUnuran::...
double breitwigner_pdf(double x, double gamma, double x0=0)
Probability density function of Breit-Wigner distribution, which is similar, just a different definit...
double poisson_pdf(unsigned int n, double mu)
Probability density function of the Poisson distribution.
double breitwigner_cdf(double x, double gamma, double x0=0)
Cumulative distribution function (lower tail) of the Breit_Wigner distribution and it is similar (jus...
double dist(Rotation3D const &r1, Rotation3D const &r2)