Logo ROOT   6.18/05
Reference Guide
TUnuran.h
Go to the documentation of this file.
1// @(#)root/unuran:$Id$
2// Author: L. Moneta Tue Sep 26 16:25:09 2006
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT *
7 * *
8 * *
9 **********************************************************************/
10
11// Header file for class TUnuran
12
13#ifndef ROOT_TUnuran
14#define ROOT_TUnuran
15
16#include <string>
17
18#include "TUnuranBaseDist.h"
19
20
21class TUnuranContDist;
24class TUnuranEmpDist;
25
26#include <memory>
27
28
29/**
30
31 \class TUnuran
32 \ingroup Unuran
33
34 TUnuran class.
35 Interface to the UNU.RAN package for generating non uniform random
36 numbers. This class wraps the UNU.RAN calls in C++ methods.
37 It provides methods for initializing Unuran and then to sample the
38 desired distribution.
39 It provides support for initializing UNU.RAN in these following way (various signatures
40 for TUnuran::Init)
41 - with string API via TUnuran::Init passing the distribution type and the method
42 - using a one-dimensional distribution object defined by TUnuranContDist
43 - using a multi-dimensional distribution object defined by TUnuranMultiContDist
44 - using a discrete one-dimensional distribution object defined by TUnuranDiscrDist
45 - using an empirical distribution defined by TUnuranEmpDist
46 - using pre-defined distributions. Presently only support for Poisson (TUnuran::InitPoisson)
47 and Binomial (TUnuran::InitBinomial) are provided. Other distributions can however be generated
48 using the previous methods (in particular via the string API)
49
50 The sampling is provided via these methods:
51 - TUnuran::Sample() returns a double for all one-dimensional distribution
52 - TUnuran::SampleDiscr() returns an integer for one-dimensional discrete distribution
53 - TUnuran::Sample(double *) sample a multi-dimensional distribution. A pointer to a vector with
54 size at least equal to the distribution dimension must be passed
55
56 In addition is possible to set the random number generator in the constructor of the class, its seed
57 via the TUnuran::SetSeed() method.
58*/
59
60
61
62//class TUnuranGenerator;
63struct unur_gen;
64typedef struct unur_gen UNUR_GEN;
65
66// struct unur_urng_generic;
67// typedef struct unur_urng_generic UNUR_URNG;
68
69struct unur_distr;
70typedef struct unur_distr UNUR_DISTR;
71
72struct unur_urng;
73typedef struct unur_urng UNUR_URNG;
74
75
76class TRandom;
77class TH1;
78
79class TUnuran {
80
81public:
82
83 /**
84 Constructor with a generator instance and given level of log output
85 */
86 TUnuran (TRandom * r = 0, unsigned int log = 0);
87
88
89 /**
90 Destructor
91 */
92 ~TUnuran ();
93
94private:
95 // usually copying is non trivial, so we make this unaccessible
96
97 /**
98 Copy constructor
99 */
100 TUnuran(const TUnuran &);
101
102 /**
103 Assignment operator
104 */
105 TUnuran & operator = (const TUnuran & rhs);
106
107public:
108
109
110 /**
111 initialize with Unuran string interface
112 */
113 bool Init(const std::string & distr, const std::string & method);
114
115
116 /**
117 Initialize method for continuous one-dimensional distribution.
118 User must provide a distribution object (which is copied inside) and a string for a method.
119 For the list of available method for 1D cont. distribution see the
120 <A href="http://statmath.wu-wien.ac.at/unuran/doc/unuran.html#Methods_005ffor_005fCONT">UnuRan doc</A>.
121 A re-initialization is needed whenever distribution parameters have been changed.
122 */
123 bool Init(const TUnuranContDist & distr, const std::string & method = "auto");
124
125 /**
126 Initialize method for continuous multi-dimensional distribution.
127 User must provide a distribution object (which is copied inside) and a string for a method.
128 For the list of available method for multivariate cont. distribution see the
129 <A href="http://statmath.wu-wien.ac.at/unuran/doc/unuran.html#Methods_005ffor_005fCVEC">UnuRan doc</A>
130 A re-initialization is needed whenever distribution parameters have been changed.
131
132 */
133 bool Init(const TUnuranMultiContDist & distr, const std::string & method = "hitro");
134
135
136 /**
137 Initialize method for continuous one-dimensional discrete distribution.
138 User must provide a distribution object (which is copied inside) and a string for a method.
139 For the list of available method for 1D discrete distribution see the
140 <A href="http://statmath.wu-wien.ac.at/unuran/doc/unuran.html#Methods_005ffor_005fDISCR">UnuRan doc</A>
141 A re-initialization is needed whenever distribution parameters have been changed.
142
143 */
144 bool Init(const TUnuranDiscrDist & distr, const std::string & method = "auto");
145
146
147 /**
148 Initialize method for continuous empirical distribution.
149 User must provide a distribution object (which is copied inside) and a string for a method.
150 The distribution object can represent binned (only 1D) or unbinned (1D or multi-dim) data
151 The method for the unbinned empirical distribution are based on the kernel smoothing, see
152 <A href="http://statmath.wu-wien.ac.at/software/unuran/doc/unuran.html#EMPK">UnuRan doc</A>
153 A re-initialization is needed whenever distribution parameters have been changed.
154
155 */
156 bool Init(const TUnuranEmpDist & distr, const std::string & method = "empk");
157
158
159 /**
160 Initialize method for the Poisson distribution
161 Used to generate poisson numbers for a constant parameter mu of the Poisson distribution.
162 Use after the method TUnuran::SampleDiscr to generate the numbers.
163 The flag reinit perform a fast re-initialization when only the distribution parameters
164 are changed in the subsequent calls.
165 If the same TUnuran object is used to generate with other distributions it cannot be used.
166 */
167 bool InitPoisson(double mu, const std::string & method = "dstd");
168
169 /**
170 Initialize method for the Binomial distribution
171 Used to generate poisson numbers for a constant parameters (n,p) of the Binomial distribution.
172 Use after the method TUnuran::SampleDiscr to generate the numbers.
173 The flag reinit perform a fast re-initialization when only the distribution parameters
174 are changed in the subsequent calls.
175 If the same TUnuran object is used to generate with other distributions it cannot be used.
176 */
177 bool InitBinomial(unsigned int ntot, double prob, const std::string & method = "dstd");
178
179 /**
180 Reinitialize UNURAN by changing the distribution parameters but mantaining same distribution and method
181 It is implemented now only for predefined discrete distributions like the poisson or the binomial
182 */
183 bool ReInitDiscrDist(unsigned int npar, double * params);
184
185 /**
186 Sample 1D distribution
187 User is responsible for having previously correctly initialized with TUnuran::Init
188 */
189 double Sample();
190
191 /**
192 Sample multidimensional distributions
193 User is responsible for having previously correctly initialized with TUnuran::Init
194 */
195 bool SampleMulti(double * x);
196
197 /**
198 Sample discrete distributions
199 User is responsible for having previously correctly initialized with TUnuran::Init
200 */
201 int SampleDiscr();
202
203 /**
204 set the random engine.
205 Must be called before init to have effect
206 */
208 fRng = r;
209 }
210
211 /**
212 return instance of the random engine used
213 */
215 return fRng;
216 }
217
218
219 /**
220 set the seed for the random number generator
221 */
222 void SetSeed(unsigned int seed);
223
224 /**
225 set log level
226 */
227 bool SetLogLevel(unsigned int iflag = 1);
228
229 /**
230 set stream for log and error (not yet implemented)
231 */
232 bool SetLogStream() { return false;}
233
234 /**
235 used Unuran method
236 */
237 const std::string & MethodName() const { return fMethod; }
238
239protected:
240
241
242 bool SetRandomGenerator();
243
245
247
249
251
252 /**
253 change the method and initialize Unuran with the previously given distribution
254 */
255 bool SetMethodAndInit();
256
257
258
259// private:
260
261 UNUR_GEN * fGen; //pointer to the UnuRan C generator struct
262 UNUR_DISTR * fUdistr; //pointer to the UnuRan C distribution struct
263 UNUR_URNG * fUrng; // pointer to Unuran C random generator struct
264 std::unique_ptr<TUnuranBaseDist> fDist; // pointer for distribution wrapper
265 TRandom * fRng; //pointer to ROOT random number generator
266 std::string fMethod; //string representing the method
267
268};
269
270
271#endif /* ROOT_Math_TUnuran */
ROOT::R::TRInterface & r
Definition: Object.C:4
double log(double)
struct unur_urng UNUR_URNG
Definition: TUnuran.h:73
struct unur_gen UNUR_GEN
Definition: TUnuran.h:64
struct unur_distr UNUR_DISTR
Definition: TUnuran.h:70
The TH1 histogram class.
Definition: TH1.h:56
This is the base class for the ROOT Random number generators.
Definition: TRandom.h:27
TUnuranContDist class describing one dimensional continuous distribution.
TUnuranDiscrDist class for one dimensional discrete distribution.
TUnuranEmpDist class for describing empiral distributions.
TUnuranMultiContDist class describing multi dimensional continuous distributions.
TUnuran class.
Definition: TUnuran.h:79
TUnuran(TRandom *r=0, unsigned int log=0)
Constructor with a generator instance and given level of log output.
Definition: TUnuran.cxx:36
bool SetMethodAndInit()
change the method and initialize Unuran with the previously given distribution
Definition: TUnuran.cxx:351
int SampleDiscr()
Sample discrete distributions User is responsible for having previously correctly initialized with TU...
Definition: TUnuran.cxx:382
bool SetLogStream()
set stream for log and error (not yet implemented)
Definition: TUnuran.h:232
const std::string & MethodName() const
used Unuran method
Definition: TUnuran.h:237
std::unique_ptr< TUnuranBaseDist > fDist
Definition: TUnuran.h:264
bool SetDiscreteDistribution(const TUnuranDiscrDist &dist)
Definition: TUnuran.cxx:304
bool InitBinomial(unsigned int ntot, double prob, const std::string &method="dstd")
Initialize method for the Binomial distribution Used to generate poisson numbers for a constant param...
Definition: TUnuran.cxx:438
bool SetContDistribution(const TUnuranContDist &dist)
Definition: TUnuran.cxx:173
bool SampleMulti(double *x)
Sample multidimensional distributions User is responsible for having previously correctly initialized...
Definition: TUnuran.cxx:396
bool ReInitDiscrDist(unsigned int npar, double *params)
Reinitialize UNURAN by changing the distribution parameters but mantaining same distribution and meth...
Definition: TUnuran.cxx:453
UNUR_DISTR * fUdistr
Definition: TUnuran.h:262
bool Init(const std::string &distr, const std::string &method)
initialize with Unuran string interface
Definition: TUnuran.cxx:79
UNUR_GEN * fGen
Definition: TUnuran.h:261
bool SetRandomGenerator()
Definition: TUnuran.cxx:156
bool SetLogLevel(unsigned int iflag=1)
set log level
Definition: TUnuran.cxx:408
UNUR_URNG * fUrng
Definition: TUnuran.h:263
TRandom * fRng
Definition: TUnuran.h:265
bool SetMultiDistribution(const TUnuranMultiContDist &dist)
Definition: TUnuran.cxx:219
double Sample()
Sample 1D distribution User is responsible for having previously correctly initialized with TUnuran::...
Definition: TUnuran.cxx:389
bool SetEmpiricalDistribution(const TUnuranEmpDist &dist)
Definition: TUnuran.cxx:263
TRandom * GetRandom()
return instance of the random engine used
Definition: TUnuran.h:214
~TUnuran()
Destructor.
Definition: TUnuran.cxx:57
bool InitPoisson(double mu, const std::string &method="dstd")
Initialize method for the Poisson distribution Used to generate poisson numbers for a constant parame...
Definition: TUnuran.cxx:423
std::string fMethod
Definition: TUnuran.h:266
TUnuran & operator=(const TUnuran &rhs)
Assignment operator.
Definition: TUnuran.cxx:72
void SetSeed(unsigned int seed)
set the seed for the random number generator
Definition: TUnuran.cxx:404
void SetRandom(TRandom *r)
set the random engine.
Definition: TUnuran.h:207
Double_t x[n]
Definition: legend1.C:17
double dist(Rotation3D const &r1, Rotation3D const &r2)
Definition: 3DDistances.cxx:48