Logo ROOT   6.18/05
Reference Guide
Functions.h
Go to the documentation of this file.
1// @(#)root/smatrix:$Id$
2// Authors: T. Glebe, L. Moneta 2005
3
4#ifndef ROOT_Math_Functions
5#define ROOT_Math_Functions
6// ********************************************************************
7//
8// source:
9//
10// type: source code
11//
12// created: 16. Mar 2001
13//
14// author: Thorsten Glebe
15// HERA-B Collaboration
16// Max-Planck-Institut fuer Kernphysik
17// Saupfercheckweg 1
18// 69117 Heidelberg
19// Germany
20// E-mail: T.Glebe@mpi-hd.mpg.de
21//
22// Description: Functions which are not applied like a unary operator
23//
24// changes:
25// 16 Mar 2001 (TG) creation
26// 03 Apr 2001 (TG) minimum added, doc++ comments added
27// 07 Apr 2001 (TG) Lmag2, Lmag added
28// 19 Apr 2001 (TG) added #include <cmath>
29// 24 Apr 2001 (TG) added sign()
30// 26 Jul 2001 (TG) round() added
31// 27 Sep 2001 (TG) added Expr declaration
32//
33// ********************************************************************
34#include <cmath>
35
36#include "Math/Expression.h"
37
38/**
39 @defgroup TempFunction Generic Template Functions
40 @ingroup SMatrixGroup
41
42 These functions apply for any type T, such as a scalar, a vector or a matrix.
43 */
44/**
45 @defgroup VectFunction Vector Template Functions
46 @ingroup SMatrixGroup
47
48 These functions apply to SVector types (and also to Vector expressions) and can
49 return a vector expression or
50 a scalar, like in the Dot product, or a matrix, like in the Tensor product
51 */
52
53
54namespace ROOT {
55
56 namespace Math {
57
58
59
60template <class T, unsigned int D> class SVector;
61
62
63/** square
64 Template function to compute \f$x\cdot x \f$, for any type T returning a type T
65
66 @ingroup TempFunction
67 @author T. Glebe
68*/
69//==============================================================================
70// square: x*x
71//==============================================================================
72template <class T>
73inline const T Square(const T& x) { return x*x; }
74
75/** maximum.
76 Template to find max(a,b) where a,b are of type T
77
78 @ingroup TempFunction
79 @author T. Glebe
80*/
81//==============================================================================
82// maximum
83//==============================================================================
84template <class T>
85inline const T Maximum(const T& lhs, const T& rhs) {
86 return (lhs > rhs) ? lhs : rhs;
87}
88
89/** minimum.
90 Template to find min(a,b) where a,b are of type T
91
92 @ingroup TempFunction
93 @author T. Glebe
94*/
95//==============================================================================
96// minimum
97//==============================================================================
98template <class T>
99inline const T Minimum(const T& lhs, const T& rhs) {
100 return (lhs < rhs) ? lhs : rhs;
101}
102
103/** round.
104 Template to compute nearest integer value for any type T
105 @ingroup TempFunction
106 @author T. Glebe
107*/
108//==============================================================================
109// round
110//==============================================================================
111template <class T>
112inline int Round(const T& x) {
113 return (x-static_cast<int>(x) < 0.5) ? static_cast<int>(x) : static_cast<int>(x+1);
114}
115
116
117/** sign.
118 Template to compute the sign of a number
119
120 @ingroup TempFunction
121 @author T. Glebe
122*/
123//==============================================================================
124// sign
125//==============================================================================
126template <class T>
127inline int Sign(const T& x) { return (x==0)? 0 : (x<0)? -1 : 1; }
128
129//==============================================================================
130// meta_dot
131//==============================================================================
132template <unsigned int I>
133struct meta_dot {
134 template <class A, class B, class T>
135 static inline T f(const A& lhs, const B& rhs, const T& x) {
136 return lhs.apply(I) * rhs.apply(I) + meta_dot<I-1>::f(lhs,rhs,x);
137 }
138};
139
140
141//==============================================================================
142// meta_dot<0>
143//==============================================================================
144template <>
145struct meta_dot<0> {
146 template <class A, class B, class T>
147 static inline T f(const A& lhs, const B& rhs, const T& /*x */) {
148 return lhs.apply(0) * rhs.apply(0);
149 }
150};
151
152
153/**
154 Vector dot product.
155 Template to compute \f$\vec{a}\cdot\vec{b} = \sum_i a_i\cdot b_i \f$.
156
157 @ingroup VectFunction
158 @author T. Glebe
159*/
160//==============================================================================
161// dot
162//==============================================================================
163template <class T, unsigned int D>
164inline T Dot(const SVector<T,D>& lhs, const SVector<T,D>& rhs) {
165 return meta_dot<D-1>::f(lhs,rhs, T());
166}
167
168//==============================================================================
169// dot
170//==============================================================================
171template <class A, class T, unsigned int D>
172inline T Dot(const SVector<T,D>& lhs, const VecExpr<A,T,D>& rhs) {
173 return meta_dot<D-1>::f(lhs,rhs, T());
174}
175
176//==============================================================================
177// dot
178//==============================================================================
179template <class A, class T, unsigned int D>
180inline T Dot(const VecExpr<A,T,D>& lhs, const SVector<T,D>& rhs) {
181 return meta_dot<D-1>::f(lhs,rhs, T());
182}
183
184
185//==============================================================================
186// dot
187//==============================================================================
188template <class A, class B, class T, unsigned int D>
189inline T Dot(const VecExpr<A,T,D>& lhs, const VecExpr<B,T,D>& rhs) {
190 return meta_dot<D-1>::f(rhs,lhs, T());
191}
192
193
194//==============================================================================
195// meta_mag
196//==============================================================================
197template <unsigned int I>
198struct meta_mag {
199 template <class A, class T>
200 static inline T f(const A& rhs, const T& x) {
201 return Square(rhs.apply(I)) + meta_mag<I-1>::f(rhs, x);
202 }
203};
204
205
206//==============================================================================
207// meta_mag<0>
208//==============================================================================
209template <>
210struct meta_mag<0> {
211 template <class A, class T>
212 static inline T f(const A& rhs, const T& ) {
213 return Square(rhs.apply(0));
214 }
215};
216
217
218/**
219 Vector magnitude square
220 Template to compute \f$|\vec{v}|^2 = \sum_iv_i^2 \f$.
221
222 @ingroup VectFunction
223 @author T. Glebe
224*/
225//==============================================================================
226// mag2
227//==============================================================================
228template <class T, unsigned int D>
229inline T Mag2(const SVector<T,D>& rhs) {
230 return meta_mag<D-1>::f(rhs, T());
231}
232
233//==============================================================================
234// mag2
235//==============================================================================
236template <class A, class T, unsigned int D>
237inline T Mag2(const VecExpr<A,T,D>& rhs) {
238 return meta_mag<D-1>::f(rhs, T());
239}
240
241/**
242 Vector magnitude (Euclidian norm)
243 Compute : \f$ |\vec{v}| = \sqrt{\sum_iv_i^2} \f$.
244
245 @ingroup VectFunction
246 @author T. Glebe
247*/
248//==============================================================================
249// mag
250//==============================================================================
251template <class T, unsigned int D>
252inline T Mag(const SVector<T,D>& rhs) {
253 return std::sqrt(Mag2(rhs));
254}
255
256//==============================================================================
257// mag
258//==============================================================================
259template <class A, class T, unsigned int D>
260inline T Mag(const VecExpr<A,T,D>& rhs) {
261 return std::sqrt(Mag2(rhs));
262}
263
264
265/** Lmag2: Square of Minkowski Lorentz-Vector norm (only for 4D Vectors)
266 Template to compute \f$ |\vec{v}|^2 = v_0^2 - v_1^2 - v_2^2 -v_3^2 \f$.
267
268 @ingroup VectFunction
269 @author T. Glebe
270*/
271//==============================================================================
272// Lmag2
273//==============================================================================
274template <class T>
275inline T Lmag2(const SVector<T,4>& rhs) {
276 return Square(rhs[0]) - Square(rhs[1]) - Square(rhs[2]) - Square(rhs[3]);
277}
278
279//==============================================================================
280// Lmag2
281//==============================================================================
282template <class A, class T>
283inline T Lmag2(const VecExpr<A,T,4>& rhs) {
284 return Square(rhs.apply(0))
285 - Square(rhs.apply(1)) - Square(rhs.apply(2)) - Square(rhs.apply(3));
286}
287
288/** Lmag: Minkowski Lorentz-Vector norm (only for 4-dim vectors)
289 Length of a vector Lorentz-Vector:
290 \f$ |\vec{v}| = \sqrt{v_0^2 - v_1^2 - v_2^2 -v_3^2} \f$.
291
292 @ingroup VectFunction
293 @author T. Glebe
294*/
295//==============================================================================
296// Lmag
297//==============================================================================
298template <class T>
299inline T Lmag(const SVector<T,4>& rhs) {
300 return std::sqrt(Lmag2(rhs));
301}
302
303//==============================================================================
304// Lmag
305//==============================================================================
306template <class A, class T>
307inline T Lmag(const VecExpr<A,T,4>& rhs) {
308 return std::sqrt(Lmag2(rhs));
309}
310
311
312/** Vector Cross Product (only for 3-dim vectors)
313 \f$ \vec{c} = \vec{a}\times\vec{b} \f$.
314
315 @ingroup VectFunction
316 @author T. Glebe
317*/
318//==============================================================================
319// cross product
320//==============================================================================
321template <class T>
322inline SVector<T,3> Cross(const SVector<T,3>& lhs, const SVector<T,3>& rhs) {
323 return SVector<T,3>(lhs.apply(1)*rhs.apply(2) -
324 lhs.apply(2)*rhs.apply(1),
325 lhs.apply(2)*rhs.apply(0) -
326 lhs.apply(0)*rhs.apply(2),
327 lhs.apply(0)*rhs.apply(1) -
328 lhs.apply(1)*rhs.apply(0));
329}
330
331//==============================================================================
332// cross product
333//==============================================================================
334template <class A, class T>
335inline SVector<T,3> Cross(const VecExpr<A,T,3>& lhs, const SVector<T,3>& rhs) {
336 return SVector<T,3>(lhs.apply(1)*rhs.apply(2) -
337 lhs.apply(2)*rhs.apply(1),
338 lhs.apply(2)*rhs.apply(0) -
339 lhs.apply(0)*rhs.apply(2),
340 lhs.apply(0)*rhs.apply(1) -
341 lhs.apply(1)*rhs.apply(0));
342}
343
344//==============================================================================
345// cross product
346//==============================================================================
347template <class T, class A>
348inline SVector<T,3> Cross(const SVector<T,3>& lhs, const VecExpr<A,T,3>& rhs) {
349 return SVector<T,3>(lhs.apply(1)*rhs.apply(2) -
350 lhs.apply(2)*rhs.apply(1),
351 lhs.apply(2)*rhs.apply(0) -
352 lhs.apply(0)*rhs.apply(2),
353 lhs.apply(0)*rhs.apply(1) -
354 lhs.apply(1)*rhs.apply(0));
355}
356
357//==============================================================================
358// cross product
359//==============================================================================
360template <class A, class B, class T>
361inline SVector<T,3> Cross(const VecExpr<A,T,3>& lhs, const VecExpr<B,T,3>& rhs) {
362 return SVector<T,3>(lhs.apply(1)*rhs.apply(2) -
363 lhs.apply(2)*rhs.apply(1),
364 lhs.apply(2)*rhs.apply(0) -
365 lhs.apply(0)*rhs.apply(2),
366 lhs.apply(0)*rhs.apply(1) -
367 lhs.apply(1)*rhs.apply(0));
368}
369
370
371/** Unit.
372 Return a vector of unit length: \f$ \vec{e}_v = \vec{v}/|\vec{v}| \f$.
373
374 @ingroup VectFunction
375 @author T. Glebe
376*/
377//==============================================================================
378// unit: returns a unit vector
379//==============================================================================
380template <class T, unsigned int D>
381inline SVector<T,D> Unit(const SVector<T,D>& rhs) {
382 return SVector<T,D>(rhs).Unit();
383}
384
385//==============================================================================
386// unit: returns a unit vector
387//==============================================================================
388template <class A, class T, unsigned int D>
389inline SVector<T,D> Unit(const VecExpr<A,T,D>& rhs) {
390 return SVector<T,D>(rhs).Unit();
391}
392
393#ifdef XXX
394//==============================================================================
395// unit: returns a unit vector (worse performance)
396//==============================================================================
397template <class T, unsigned int D>
398inline VecExpr<BinaryOp<DivOp<T>, SVector<T,D>, Constant<T>, T>, T, D>
399 unit(const SVector<T,D>& lhs) {
400 typedef BinaryOp<DivOp<T>, SVector<T,D>, Constant<T>, T> DivOpBinOp;
401 return VecExpr<DivOpBinOp,T,D>(DivOpBinOp(DivOp<T>(),lhs,Constant<T>(mag(lhs))));
402}
403
404//==============================================================================
405// unit: returns a unit vector (worse performance)
406//==============================================================================
407template <class A, class T, unsigned int D>
408inline VecExpr<BinaryOp<DivOp<T>, VecExpr<A,T,D>, Constant<T>, T>, T, D>
409 unit(const VecExpr<A,T,D>& lhs) {
410 typedef BinaryOp<DivOp<T>, VecExpr<A,T,D>, Constant<T>, T> DivOpBinOp;
411 return VecExpr<DivOpBinOp,T,D>(DivOpBinOp(DivOp<T>(),lhs,Constant<T>(mag(lhs))));
412}
413#endif
414
415
416 } // namespace Math
417
418} // namespace ROOT
419
420
421
422#endif /* ROOT_Math_Functions */
double sqrt(double)
SVector: a generic fixed size Vector class.
Definition: SVector.h:75
SVector< T, D > & Unit()
transform vector into a vector of length 1
Definition: SVector.icc:480
T apply(unsigned int i) const
access the parse tree. Index starts from zero
Definition: SVector.icc:540
Expression wrapper class for Vector objects.
Definition: Expression.h:64
T apply(unsigned int i) const
Definition: Expression.h:77
const T Square(const T &x)
square Template function to compute , for any type T returning a type T
Definition: Functions.h:73
const T Minimum(const T &lhs, const T &rhs)
minimum.
Definition: Functions.h:99
int Sign(const T &x)
sign.
Definition: Functions.h:127
int Round(const T &x)
round.
Definition: Functions.h:112
const T Maximum(const T &lhs, const T &rhs)
maximum.
Definition: Functions.h:85
SVector< T, D > Unit(const SVector< T, D > &rhs)
Unit.
Definition: Functions.h:381
SVector< T, 3 > Cross(const SVector< T, 3 > &lhs, const SVector< T, 3 > &rhs)
Vector Cross Product (only for 3-dim vectors) .
Definition: Functions.h:322
T Lmag2(const SVector< T, 4 > &rhs)
Lmag2: Square of Minkowski Lorentz-Vector norm (only for 4D Vectors) Template to compute .
Definition: Functions.h:275
T Mag2(const SVector< T, D > &rhs)
Vector magnitude square Template to compute .
Definition: Functions.h:229
T Dot(const SVector< T, D > &lhs, const SVector< T, D > &rhs)
Vector dot product.
Definition: Functions.h:164
T Mag(const SVector< T, D > &rhs)
Vector magnitude (Euclidian norm) Compute : .
Definition: Functions.h:252
T Lmag(const SVector< T, 4 > &rhs)
Lmag: Minkowski Lorentz-Vector norm (only for 4-dim vectors) Length of a vector Lorentz-Vector: .
Definition: Functions.h:299
Double_t x[n]
Definition: legend1.C:17
#define I(x, y, z)
Namespace for new Math classes and functions.
static double B[]
static double A[]
double T(double x)
Definition: ChebyshevPol.h:34
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
static T f(const A &lhs, const B &rhs, const T &)
Definition: Functions.h:147
static T f(const A &lhs, const B &rhs, const T &x)
Definition: Functions.h:135
static T f(const A &rhs, const T &)
Definition: Functions.h:212
static T f(const A &rhs, const T &x)
Definition: Functions.h:200