Definition at line 47 of file ROCCurve.h.
|
| ROCCurve (const std::vector< Float_t > &mvaSignal, const std::vector< Float_t > &mvaBackground) |
|
| ROCCurve (const std::vector< Float_t > &mvaSignal, const std::vector< Float_t > &mvaBackground, const std::vector< Float_t > &mvaSignalWeights, const std::vector< Float_t > &mvaBackgroundWeights) |
|
| ROCCurve (const std::vector< Float_t > &mvaValues, const std::vector< Bool_t > &mvaTargets) |
|
| ROCCurve (const std::vector< Float_t > &mvaValues, const std::vector< Bool_t > &mvaTargets, const std::vector< Float_t > &mvaWeights) |
|
| ROCCurve (const std::vector< std::tuple< Float_t, Float_t, Bool_t > > &mvas) |
|
| ~ROCCurve () |
| destructor More...
|
|
Double_t | GetEffSForEffB (Double_t effB, const UInt_t num_points=41) |
| Calculate the signal efficiency (sensitivity) for a given background efficiency (sensitivity). More...
|
|
const std::vector< std::tuple< Float_t, Float_t, Bool_t > > | GetMvas () const |
|
TGraph * | GetROCCurve (const UInt_t points=100) |
| Returns a new TGraph containing the ROC curve. More...
|
|
Double_t | GetROCIntegral (const UInt_t points=41) |
| Calculates the ROC integral (AUC) More...
|
|
#include <TMVA/ROCCurve.h>
◆ ROCCurve() [1/5]
◆ ROCCurve() [2/5]
TMVA::ROCCurve::ROCCurve |
( |
const std::vector< Float_t > & |
mvaValues, |
|
|
const std::vector< Bool_t > & |
mvaTargets, |
|
|
const std::vector< Float_t > & |
mvaWeights |
|
) |
| |
◆ ROCCurve() [3/5]
TMVA::ROCCurve::ROCCurve |
( |
const std::vector< Float_t > & |
mvaValues, |
|
|
const std::vector< Bool_t > & |
mvaTargets |
|
) |
| |
◆ ROCCurve() [4/5]
TMVA::ROCCurve::ROCCurve |
( |
const std::vector< Float_t > & |
mvaSignal, |
|
|
const std::vector< Float_t > & |
mvaBackground, |
|
|
const std::vector< Float_t > & |
mvaSignalWeights, |
|
|
const std::vector< Float_t > & |
mvaBackgroundWeights |
|
) |
| |
◆ ROCCurve() [5/5]
TMVA::ROCCurve::ROCCurve |
( |
const std::vector< Float_t > & |
mvaSignal, |
|
|
const std::vector< Float_t > & |
mvaBackground |
|
) |
| |
◆ ~ROCCurve()
TMVA::ROCCurve::~ROCCurve |
( |
| ) |
|
◆ ComputeSensitivity()
std::vector< Double_t > TMVA::ROCCurve::ComputeSensitivity |
( |
const UInt_t |
num_points | ) |
|
|
private |
◆ ComputeSpecificity()
std::vector< Double_t > TMVA::ROCCurve::ComputeSpecificity |
( |
const UInt_t |
num_points | ) |
|
|
private |
◆ GetEffSForEffB()
Calculate the signal efficiency (sensitivity) for a given background efficiency (sensitivity).
- Parameters
-
effB | Background efficiency for which to calculate signal efficiency. |
num_points | Number of points used for the underlying histogram. The number of bins will be num_points - 1. |
Definition at line 220 of file ROCCurve.cxx.
◆ GetMvas()
◆ GetROCCurve()
TGraph * TMVA::ROCCurve::GetROCCurve |
( |
const UInt_t |
num_points = 100 | ) |
|
Returns a new TGraph containing the ROC curve.
Specificity is on the x-axis, sensitivity on the y-axis.
- Parameters
-
num_points | Granularity of the resulting curve. The curve will be subdivided into num_points - 1 regions where the performance of the classifier is sampled. Larger number means more accurate, but more costly, evaluation. |
Definition at line 277 of file ROCCurve.cxx.
◆ GetROCIntegral()
Double_t TMVA::ROCCurve::GetROCIntegral |
( |
const UInt_t |
num_points = 41 | ) |
|
Calculates the ROC integral (AUC)
- Parameters
-
num_points | Granularity of the resulting curve used for integration. The curve will be subdivided into num_points - 1 regions where the performance of the classifier is sampled. Larger number means more accurate, but more costly, evaluation. |
Definition at line 251 of file ROCCurve.cxx.
◆ Log()
◆ fGraph
TGraph* TMVA::ROCCurve::fGraph |
|
private |
◆ fLogger
◆ fMva
[legend]