ROOT 6.18/05 Reference Guide |
Definition at line 43 of file ConvLayer.h.
Public Types | |
using | Matrix_t = typename Architecture_t::Matrix_t |
using | Scalar_t = typename Architecture_t::Scalar_t |
Public Member Functions | |
TConvLayer (const TConvLayer &) | |
Copy constructor. More... | |
TConvLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, EInitialization Init, size_t FilterHeight, size_t FilterWidth, size_t StrideRows, size_t StrideCols, size_t PaddingHeight, size_t PaddingWidth, Scalar_t DropoutProbability, EActivationFunction f, ERegularization Reg, Scalar_t WeightDecay) | |
Constructor. More... | |
TConvLayer (TConvLayer< Architecture_t > *layer) | |
Copy the conv layer provided as a pointer. More... | |
~TConvLayer () | |
Destructor. More... | |
virtual void | AddWeightsXMLTo (void *parent) |
Writes the information and the weights about the layer in an XML node. More... | |
void | Backward (std::vector< Matrix_t > &gradients_backward, const std::vector< Matrix_t > &activations_backward, std::vector< Matrix_t > &inp1, std::vector< Matrix_t > &inp2) |
Compute weight, bias and activation gradients. More... | |
void | Forward (std::vector< Matrix_t > &input, bool applyDropout=false) |
Computes activation of the layer for the given input. More... | |
EActivationFunction | GetActivationFunction () const |
std::vector< Matrix_t > & | GetDerivatives () |
const std::vector< Matrix_t > & | GetDerivatives () const |
Matrix_t & | GetDerivativesAt (size_t i) |
const Matrix_t & | GetDerivativesAt (size_t i) const |
Scalar_t | GetDropoutProbability () const |
size_t | GetFilterDepth () const |
Getters. More... | |
size_t | GetFilterHeight () const |
size_t | GetFilterWidth () const |
std::vector< Matrix_t > & | GetForwardMatrices () |
const std::vector< Matrix_t > & | GetForwardMatrices () const |
size_t | GetNLocalViewPixels () const |
size_t | GetNLocalViews () const |
size_t | GetPaddingHeight () const |
size_t | GetPaddingWidth () const |
ERegularization | GetRegularization () const |
size_t | GetStrideCols () const |
size_t | GetStrideRows () const |
Scalar_t | GetWeightDecay () const |
void | Print () const |
Prints the info about the layer. More... | |
virtual void | ReadWeightsFromXML (void *parent) |
Read the information and the weights about the layer from XML node. More... | |
Public Member Functions inherited from TMVA::DNN::VGeneralLayer< Architecture_t > | |
VGeneralLayer (const VGeneralLayer &) | |
Copy Constructor. More... | |
VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, size_t WeightsNRows, size_t WeightsNCols, size_t BiasesNSlices, size_t BiasesNRows, size_t BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | |
Constructor. More... | |
VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, std::vector< size_t > WeightsNRows, std::vector< size_t > WeightsNCols, size_t BiasesNSlices, std::vector< size_t > BiasesNRows, std::vector< size_t > BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | |
General Constructor with different weights dimension. More... | |
VGeneralLayer (VGeneralLayer< Architecture_t > *layer) | |
Copy the layer provided as a pointer. More... | |
virtual | ~VGeneralLayer () |
Virtual Destructor. More... | |
virtual void | AddWeightsXMLTo (void *parent)=0 |
Writes the information and the weights about the layer in an XML node. More... | |
virtual void | Backward (std::vector< Matrix_t > &gradients_backward, const std::vector< Matrix_t > &activations_backward, std::vector< Matrix_t > &inp1, std::vector< Matrix_t > &inp2)=0 |
Backpropagates the error. More... | |
void | CopyBiases (const std::vector< Matrix_t > &otherBiases) |
Copies the biases provided as an input. More... | |
void | CopyWeights (const std::vector< Matrix_t > &otherWeights) |
Copies the weights provided as an input. More... | |
virtual void | Forward (std::vector< Matrix_t > &input, bool applyDropout=false)=0 |
Computes activation of the layer for the given input. More... | |
std::vector< Matrix_t > & | GetActivationGradients () |
const std::vector< Matrix_t > & | GetActivationGradients () const |
Matrix_t & | GetActivationGradientsAt (size_t i) |
const Matrix_t & | GetActivationGradientsAt (size_t i) const |
size_t | GetBatchSize () const |
Getters. More... | |
std::vector< Matrix_t > & | GetBiases () |
const std::vector< Matrix_t > & | GetBiases () const |
Matrix_t & | GetBiasesAt (size_t i) |
const Matrix_t & | GetBiasesAt (size_t i) const |
std::vector< Matrix_t > & | GetBiasGradients () |
const std::vector< Matrix_t > & | GetBiasGradients () const |
Matrix_t & | GetBiasGradientsAt (size_t i) |
const Matrix_t & | GetBiasGradientsAt (size_t i) const |
size_t | GetDepth () const |
size_t | GetHeight () const |
EInitialization | GetInitialization () const |
size_t | GetInputDepth () const |
size_t | GetInputHeight () const |
size_t | GetInputWidth () const |
std::vector< Matrix_t > & | GetOutput () |
const std::vector< Matrix_t > & | GetOutput () const |
Matrix_t & | GetOutputAt (size_t i) |
const Matrix_t & | GetOutputAt (size_t i) const |
std::vector< Matrix_t > & | GetWeightGradients () |
const std::vector< Matrix_t > & | GetWeightGradients () const |
Matrix_t & | GetWeightGradientsAt (size_t i) |
const Matrix_t & | GetWeightGradientsAt (size_t i) const |
std::vector< Matrix_t > & | GetWeights () |
const std::vector< Matrix_t > & | GetWeights () const |
Matrix_t & | GetWeightsAt (size_t i) |
const Matrix_t & | GetWeightsAt (size_t i) const |
size_t | GetWidth () const |
void | Initialize () |
Initialize the weights and biases according to the given initialization method. More... | |
bool | IsTraining () const |
virtual void | Print () const =0 |
Prints the info about the layer. More... | |
void | ReadMatrixXML (void *node, const char *name, Matrix_t &matrix) |
virtual void | ReadWeightsFromXML (void *parent)=0 |
Read the information and the weights about the layer from XML node. More... | |
void | SetBatchSize (size_t batchSize) |
Setters. More... | |
void | SetDepth (size_t depth) |
virtual void | SetDropoutProbability (Scalar_t) |
Set Dropout probability. More... | |
void | SetHeight (size_t height) |
void | SetInputDepth (size_t inputDepth) |
void | SetInputHeight (size_t inputHeight) |
void | SetInputWidth (size_t inputWidth) |
void | SetIsTraining (bool isTraining) |
void | SetWidth (size_t width) |
void | Update (const Scalar_t learningRate) |
Updates the weights and biases, given the learning rate. More... | |
void | UpdateBiases (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
Updates the biases, given the gradients and the learning rate. More... | |
void | UpdateBiasGradients (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
Updates the bias gradients, given some other weight gradients and learning rate. More... | |
void | UpdateWeightGradients (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
Updates the weight gradients, given some other weight gradients and learning rate. More... | |
void | UpdateWeights (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
Updates the weights, given the gradients and the learning rate,. More... | |
void | WriteMatrixToXML (void *node, const char *name, const Matrix_t &matrix) |
void | WriteTensorToXML (void *node, const char *name, const std::vector< Matrix_t > &tensor) |
helper functions for XML More... | |
Protected Attributes | |
Scalar_t | fDropoutProbability |
Probability that an input is active. More... | |
size_t | fFilterDepth |
The depth of the filter. More... | |
size_t | fFilterHeight |
The height of the filter. More... | |
size_t | fFilterWidth |
The width of the filter. More... | |
size_t | fNLocalViewPixels |
The number of pixels in one local image view. More... | |
size_t | fNLocalViews |
The number of local views in one image. More... | |
size_t | fStrideCols |
The number of column pixels to slid the filter each step. More... | |
size_t | fStrideRows |
The number of row pixels to slid the filter each step. More... | |
Protected Attributes inherited from TMVA::DNN::VGeneralLayer< Architecture_t > | |
std::vector< Matrix_t > | fActivationGradients |
Gradients w.r.t. the activations of this layer. More... | |
size_t | fBatchSize |
Batch size used for training and evaluation. More... | |
std::vector< Matrix_t > | fBiases |
The biases associated to the layer. More... | |
std::vector< Matrix_t > | fBiasGradients |
Gradients w.r.t. the bias values of the layer. More... | |
size_t | fDepth |
The depth of the layer. More... | |
size_t | fHeight |
The height of the layer. More... | |
EInitialization | fInit |
The initialization method. More... | |
size_t | fInputDepth |
The depth of the previous layer or input. More... | |
size_t | fInputHeight |
The height of the previous layer or input. More... | |
size_t | fInputWidth |
The width of the previous layer or input. More... | |
bool | fIsTraining |
Flag indicatig the mode. More... | |
std::vector< Matrix_t > | fOutput |
Activations of this layer. More... | |
std::vector< Matrix_t > | fWeightGradients |
Gradients w.r.t. the weights of the layer. More... | |
std::vector< Matrix_t > | fWeights |
The weights associated to the layer. More... | |
size_t | fWidth |
The width of this layer. More... | |
Private Member Functions | |
size_t | calculateDimension (size_t imgDim, size_t fltDim, size_t padding, size_t stride) |
size_t | calculateNLocalViewPixels (size_t depth, size_t height, size_t width) |
size_t | calculateNLocalViews (size_t inputHeight, size_t filterHeight, size_t paddingHeight, size_t strideRows, size_t inputWidth, size_t filterWidth, size_t paddingWidth, size_t strideCols) |
Private Attributes | |
std::vector< int > | fBackwardIndices |
Vector of indices used for a fast Im2Col in backward pass. More... | |
std::vector< Matrix_t > | fDerivatives |
First fDerivatives of the activations of this layer. More... | |
EActivationFunction | fF |
Activation function of the layer. More... | |
std::vector< Matrix_t > | fForwardMatrices |
Vector of matrices used for speeding-up the forward pass. More... | |
size_t | fPaddingHeight |
The number of zero layers added top and bottom of the input. More... | |
size_t | fPaddingWidth |
The number of zero layers left and right of the input. More... | |
ERegularization | fReg |
The regularization method. More... | |
Scalar_t | fWeightDecay |
The weight decay. More... | |
#include <TMVA/DNN/CNN/ConvLayer.h>
using TMVA::DNN::CNN::TConvLayer< Architecture_t >::Matrix_t = typename Architecture_t::Matrix_t |
Definition at line 45 of file ConvLayer.h.
using TMVA::DNN::CNN::TConvLayer< Architecture_t >::Scalar_t = typename Architecture_t::Scalar_t |
Definition at line 46 of file ConvLayer.h.
TMVA::DNN::CNN::TConvLayer< Architecture_t >::TConvLayer | ( | size_t | BatchSize, |
size_t | InputDepth, | ||
size_t | InputHeight, | ||
size_t | InputWidth, | ||
size_t | Depth, | ||
EInitialization | Init, | ||
size_t | FilterHeight, | ||
size_t | FilterWidth, | ||
size_t | StrideRows, | ||
size_t | StrideCols, | ||
size_t | PaddingHeight, | ||
size_t | PaddingWidth, | ||
Scalar_t | DropoutProbability, | ||
EActivationFunction | f, | ||
ERegularization | Reg, | ||
Scalar_t | WeightDecay | ||
) |
Constructor.
Definition at line 189 of file ConvLayer.h.
TMVA::DNN::CNN::TConvLayer< Architecture_t >::TConvLayer | ( | TConvLayer< Architecture_t > * | layer | ) |
Copy the conv layer provided as a pointer.
Definition at line 223 of file ConvLayer.h.
TMVA::DNN::CNN::TConvLayer< Architecture_t >::TConvLayer | ( | const TConvLayer< Architecture_t > & | convLayer | ) |
Copy constructor.
Definition at line 246 of file ConvLayer.h.
TMVA::DNN::CNN::TConvLayer< Architecture_t >::~TConvLayer |
Destructor.
Definition at line 266 of file ConvLayer.h.
|
virtual |
Writes the information and the weights about the layer in an XML node.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Reimplemented in TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >.
Definition at line 371 of file ConvLayer.h.
|
virtual |
Compute weight, bias and activation gradients.
Uses the precomputed first partial derviatives of the activation function computed during forward propagation and modifies them. Must only be called directly at the corresponding call to Forward(...).
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Reimplemented in TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >.
Definition at line 334 of file ConvLayer.h.
|
private |
Definition at line 405 of file ConvLayer.h.
|
inlineprivate |
Definition at line 53 of file ConvLayer.h.
|
private |
Definition at line 416 of file ConvLayer.h.
|
virtual |
Computes activation of the layer for the given input.
The input must be in 3D tensor form with the different matrices corresponding to different events in the batch. Computes activations as well as the first partial derivative of the activation function at those activations.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Reimplemented in TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >.
Definition at line 272 of file ConvLayer.h.
|
inline |
Definition at line 150 of file ConvLayer.h.
|
inline |
Definition at line 142 of file ConvLayer.h.
|
inline |
Definition at line 141 of file ConvLayer.h.
|
inline |
Definition at line 144 of file ConvLayer.h.
|
inline |
Definition at line 145 of file ConvLayer.h.
|
inline |
Definition at line 139 of file ConvLayer.h.
|
inline |
Getters.
Definition at line 126 of file ConvLayer.h.
|
inline |
Definition at line 127 of file ConvLayer.h.
|
inline |
Definition at line 128 of file ConvLayer.h.
|
inline |
Definition at line 148 of file ConvLayer.h.
|
inline |
Definition at line 147 of file ConvLayer.h.
|
inline |
Definition at line 136 of file ConvLayer.h.
|
inline |
Definition at line 137 of file ConvLayer.h.
|
inline |
Definition at line 133 of file ConvLayer.h.
|
inline |
Definition at line 134 of file ConvLayer.h.
|
inline |
Definition at line 151 of file ConvLayer.h.
|
inline |
Definition at line 131 of file ConvLayer.h.
|
inline |
Definition at line 130 of file ConvLayer.h.
|
inline |
Definition at line 152 of file ConvLayer.h.
|
virtual |
Prints the info about the layer.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Reimplemented in TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >.
Definition at line 351 of file ConvLayer.h.
|
virtual |
Read the information and the weights about the layer from XML node.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Reimplemented in TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >.
Definition at line 396 of file ConvLayer.h.
|
private |
Vector of indices used for a fast Im2Col in backward pass.
Definition at line 78 of file ConvLayer.h.
|
private |
First fDerivatives of the activations of this layer.
Definition at line 76 of file ConvLayer.h.
|
protected |
Probability that an input is active.
Definition at line 70 of file ConvLayer.h.
|
private |
Activation function of the layer.
Definition at line 80 of file ConvLayer.h.
|
protected |
The depth of the filter.
Definition at line 60 of file ConvLayer.h.
|
protected |
The height of the filter.
Definition at line 61 of file ConvLayer.h.
|
protected |
The width of the filter.
Definition at line 62 of file ConvLayer.h.
|
private |
Vector of matrices used for speeding-up the forward pass.
Definition at line 84 of file ConvLayer.h.
|
protected |
The number of pixels in one local image view.
Definition at line 67 of file ConvLayer.h.
|
protected |
The number of local views in one image.
Definition at line 68 of file ConvLayer.h.
|
private |
The number of zero layers added top and bottom of the input.
Definition at line 73 of file ConvLayer.h.
|
private |
The number of zero layers left and right of the input.
Definition at line 74 of file ConvLayer.h.
|
private |
The regularization method.
Definition at line 81 of file ConvLayer.h.
|
protected |
The number of column pixels to slid the filter each step.
Definition at line 65 of file ConvLayer.h.
|
protected |
The number of row pixels to slid the filter each step.
Definition at line 64 of file ConvLayer.h.
|
private |
The weight decay.
Definition at line 82 of file ConvLayer.h.