AddWeightsXMLTo(void *parent) | TMVA::DNN::CNN::TConvLayer< Architecture_t > | virtual |
Backward(std::vector< Matrix_t > &gradients_backward, const std::vector< Matrix_t > &activations_backward, std::vector< Matrix_t > &inp1, std::vector< Matrix_t > &inp2) | TMVA::DNN::CNN::TConvLayer< Architecture_t > | virtual |
calculateDimension(size_t imgDim, size_t fltDim, size_t padding, size_t stride) | TMVA::DNN::CNN::TConvLayer< Architecture_t > | private |
calculateNLocalViewPixels(size_t depth, size_t height, size_t width) | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inlineprivate |
calculateNLocalViews(size_t inputHeight, size_t filterHeight, size_t paddingHeight, size_t strideRows, size_t inputWidth, size_t filterWidth, size_t paddingWidth, size_t strideCols) | TMVA::DNN::CNN::TConvLayer< Architecture_t > | private |
CopyBiases(const std::vector< Matrix_t > &otherBiases) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
CopyWeights(const std::vector< Matrix_t > &otherWeights) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
fActivationGradients | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fBackwardIndices | TMVA::DNN::CNN::TConvLayer< Architecture_t > | private |
fBatchSize | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fBiases | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fBiasGradients | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fDepth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fDerivatives | TMVA::DNN::CNN::TConvLayer< Architecture_t > | private |
fDropoutProbability | TMVA::DNN::CNN::TConvLayer< Architecture_t > | protected |
fF | TMVA::DNN::CNN::TConvLayer< Architecture_t > | private |
fFilterDepth | TMVA::DNN::CNN::TConvLayer< Architecture_t > | protected |
fFilterHeight | TMVA::DNN::CNN::TConvLayer< Architecture_t > | protected |
fFilterWidth | TMVA::DNN::CNN::TConvLayer< Architecture_t > | protected |
fForwardMatrices | TMVA::DNN::CNN::TConvLayer< Architecture_t > | private |
fHeight | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fInit | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fInputDepth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fInputHeight | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fInputWidth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fIsTraining | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fNLocalViewPixels | TMVA::DNN::CNN::TConvLayer< Architecture_t > | protected |
fNLocalViews | TMVA::DNN::CNN::TConvLayer< Architecture_t > | protected |
Forward(std::vector< Matrix_t > &input, bool applyDropout=false) | TMVA::DNN::CNN::TConvLayer< Architecture_t > | virtual |
fOutput | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fPaddingHeight | TMVA::DNN::CNN::TConvLayer< Architecture_t > | private |
fPaddingWidth | TMVA::DNN::CNN::TConvLayer< Architecture_t > | private |
fReg | TMVA::DNN::CNN::TConvLayer< Architecture_t > | private |
fStrideCols | TMVA::DNN::CNN::TConvLayer< Architecture_t > | protected |
fStrideRows | TMVA::DNN::CNN::TConvLayer< Architecture_t > | protected |
fWeightDecay | TMVA::DNN::CNN::TConvLayer< Architecture_t > | private |
fWeightGradients | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fWeights | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
fWidth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected |
GetActivationFunction() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetActivationGradients() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetActivationGradients() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetActivationGradientsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetActivationGradientsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetBatchSize() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetBiases() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetBiases() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetBiasesAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetBiasesAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetBiasGradients() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetBiasGradients() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetBiasGradientsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetBiasGradientsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetDepth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetDerivatives() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetDerivatives() | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetDerivativesAt(size_t i) | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetDerivativesAt(size_t i) const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetDropoutProbability() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetFilterDepth() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetFilterHeight() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetFilterWidth() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetForwardMatrices() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetForwardMatrices() | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetHeight() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetInitialization() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetInputDepth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetInputHeight() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetInputWidth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetNLocalViewPixels() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetNLocalViews() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetOutput() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetOutput() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetOutputAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetOutputAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetPaddingHeight() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetPaddingWidth() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetRegularization() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetStrideCols() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetStrideRows() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetWeightDecay() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | inline |
GetWeightGradients() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetWeightGradients() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetWeightGradientsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetWeightGradientsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetWeights() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetWeights() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetWeightsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetWeightsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
GetWidth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
Initialize() | TMVA::DNN::VGeneralLayer< Architecture_t > | |
IsTraining() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
Matrix_t typedef | TMVA::DNN::CNN::TConvLayer< Architecture_t > | |
Print() const | TMVA::DNN::CNN::TConvLayer< Architecture_t > | virtual |
ReadMatrixXML(void *node, const char *name, Matrix_t &matrix) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
ReadWeightsFromXML(void *parent) | TMVA::DNN::CNN::TConvLayer< Architecture_t > | virtual |
Scalar_t typedef | TMVA::DNN::CNN::TConvLayer< Architecture_t > | |
SetBatchSize(size_t batchSize) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
SetDepth(size_t depth) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
SetDropoutProbability(Scalar_t) | TMVA::DNN::VGeneralLayer< Architecture_t > | inlinevirtual |
SetHeight(size_t height) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
SetInputDepth(size_t inputDepth) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
SetInputHeight(size_t inputHeight) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
SetInputWidth(size_t inputWidth) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
SetIsTraining(bool isTraining) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
SetWidth(size_t width) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline |
TConvLayer(size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, EInitialization Init, size_t FilterHeight, size_t FilterWidth, size_t StrideRows, size_t StrideCols, size_t PaddingHeight, size_t PaddingWidth, Scalar_t DropoutProbability, EActivationFunction f, ERegularization Reg, Scalar_t WeightDecay) | TMVA::DNN::CNN::TConvLayer< Architecture_t > | |
TConvLayer(TConvLayer< Architecture_t > *layer) | TMVA::DNN::CNN::TConvLayer< Architecture_t > | |
TConvLayer(const TConvLayer &) | TMVA::DNN::CNN::TConvLayer< Architecture_t > | |
Update(const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
UpdateBiases(const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
UpdateBiasGradients(const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
UpdateWeightGradients(const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
UpdateWeights(const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
VGeneralLayer(size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, size_t WeightsNRows, size_t WeightsNCols, size_t BiasesNSlices, size_t BiasesNRows, size_t BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
VGeneralLayer(size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, std::vector< size_t > WeightsNRows, std::vector< size_t > WeightsNCols, size_t BiasesNSlices, std::vector< size_t > BiasesNRows, std::vector< size_t > BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
VGeneralLayer(VGeneralLayer< Architecture_t > *layer) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
VGeneralLayer(const VGeneralLayer &) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
WriteMatrixToXML(void *node, const char *name, const Matrix_t &matrix) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
WriteTensorToXML(void *node, const char *name, const std::vector< Matrix_t > &tensor) | TMVA::DNN::VGeneralLayer< Architecture_t > | |
~TConvLayer() | TMVA::DNN::CNN::TConvLayer< Architecture_t > | |
~VGeneralLayer() | TMVA::DNN::VGeneralLayer< Architecture_t > | virtual |