Logo ROOT   6.18/05
Reference Guide
TensorDataLoader.h
Go to the documentation of this file.
1// @(#)root/tmva/tmva/dnn:$Id$
2// Author: Vladimir Ilievski
3
4/**********************************************************************************
5 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6 * Package: TMVA *
7 * Class : TTensorDataLoader *
8 * Web : http://tmva.sourceforge.net *
9 * *
10 * Description: *
11 * Tensor Data Loader Class *
12 * *
13 * Authors (alphabetical): *
14 * Vladimir Ilievski <ilievski.vladimir@live.com> - CERN, Switzerland *
15 * *
16 * Copyright (c) 2005-2015: *
17 * CERN, Switzerland *
18 * U. of Victoria, Canada *
19 * MPI-K Heidelberg, Germany *
20 * U. of Bonn, Germany *
21 * *
22 * Redistribution and use in source and binary forms, with or without *
23 * modification, are permitted according to the terms listed in LICENSE *
24 * (http://tmva.sourceforge.net/LICENSE) *
25 **********************************************************************************/
26
27#ifndef TMVA_DNN_TENSORDATALOADER
28#define TMVA_DNN_TENSORDATALOADER
29
30#include "TMatrix.h"
31#include "TMVA/Event.h"
32#include <algorithm>
33
34namespace TMVA {
35 class DataSetInfo;
36namespace DNN {
37
38//
39// Input Data Types
40//______________________________________________________________________________
42 std::tuple<const std::vector<TMatrixT<Double_t>> &, const TMatrixT<Double_t> &, const TMatrixT<Double_t> &>;
43
44using TMVAInput_t = std::tuple<const std::vector<Event *> &, const DataSetInfo &>;
45using IndexIterator_t = typename std::vector<size_t>::iterator;
46
47/** TTensorBatch
48 *
49 * Class representing training batches consisting of a vector of matrices as input data
50 * and a matrix of output data. The input and output data can be accessed using
51 * the GetInput() and GetOutput() member functions.
52 *
53 * \tparam Architecture_t The underlying architecture.
54 */
55
56template <typename Architecture_t>
58public:
59 using Matrix_t = typename Architecture_t::Matrix_t;
60
61private:
62 std::vector<Matrix_t> fInputTensor; ///< The input tensor batch, one matrix one input.
63 Matrix_t fOutputMatrix; ///< The output matrix representing the ground truth.
65
66public:
67 TTensorBatch(std::vector<Matrix_t> &, Matrix_t &, Matrix_t &);
68 TTensorBatch(const TTensorBatch &) = default;
70 TTensorBatch &operator=(const TTensorBatch &) = default;
72
73 /** Return the tensor representing the input data */
74 std::vector<Matrix_t> &GetInput() { return fInputTensor; }
75 /** Return the matrix representing the output data. */
77 /** Return the matrix holding the event weights. */
79};
80
81template <typename Data_t, typename Architecture_t>
83
84/** TTensorBatchIterator
85 *
86 * Simple iterator class for the iterations over the training batches in
87 * a given data set represented by a TTensorDataLoader object.
88 *
89 * \tparam Data_t The input data type.
90 * \tparam Architecture_t The underlying architecture type.
91 */
92template <typename Data_t, typename Architecture_t>
94private:
97
98public:
100 : fTensorDataLoader(tensorDataLoader), fBatchIndex(index)
101 {
102 // Nothing to do here.
103 }
104
107 {
108 fBatchIndex++;
109 return *this;
110 }
111 bool operator!=(const TTensorBatchIterator &other) { return fBatchIndex != other.fBatchIndex; }
112};
113
114/** TTensorDataLoader
115 *
116 * Service class managing the streaming of the training data from the input data
117 * type to the accelerator device or the CPU. A TTensorDataLoader object manages
118 * a number of host and device buffer pairs that are used in a round-robin manner
119 * for the transfer of batches to the device.
120 *
121 * Each TTensorDataLoader object has an associated batch size and a number of total
122 * samples in the dataset. One epoch is the number of buffers required to transfer
123 * the complete training set. Using the begin() and end() member functions allows
124 * the user to iterate over the batches in one epoch.
125 *
126 * \tparam Data_t The input data type.
127 * \tparam Architecture_t The achitecture class of the underlying architecture.
128 */
129template <typename Data_t, typename Architecture_t>
131private:
132 using HostBuffer_t = typename Architecture_t::HostBuffer_t;
133 using DeviceBuffer_t = typename Architecture_t::DeviceBuffer_t;
134 using Matrix_t = typename Architecture_t::Matrix_t;
136
137 const Data_t &fData; ///< The data that should be loaded in the batches.
138
139 size_t fNSamples; ///< The total number of samples in the dataset.
140 size_t fBatchSize; ///< The size of a batch.
141 size_t fBatchDepth; ///< The number of matrices in the tensor.
142 size_t fBatchHeight; ///< The number od rows in each matrix.
143 size_t fBatchWidth; ///< The number of columns in each matrix.
144 size_t fNOutputFeatures; ///< The number of outputs from the classifier/regressor.
145 size_t fBatchIndex; ///< The index of the batch when there are multiple batches in parallel
146
147 size_t fNStreams; ///< Number of buffer pairs.
148 std::vector<DeviceBuffer_t> fDeviceBuffers; ///< The device buffers used to keep the input, output and weight data.
149 std::vector<HostBuffer_t> fHostBuffers; ///< The host buffers used to load the input, output and weight data.
150
151 std::vector<size_t> fSampleIndices; ///< Ordering of the samples in the epoch.
152
153public:
154 /*! Constructor. */
155 TTensorDataLoader(const Data_t &data, size_t nSamples, size_t batchSize, size_t batchDepth, size_t batchHeight,
156 size_t batchWidth, size_t nOutputFeatures, size_t nStreams = 1);
157
162
163 /** Copy input tensor into the given host buffer. Function to be specialized by
164 * the architecture-specific backend. */
166 /** Copy output matrix into the given host buffer. Function to be specialized
167 * by the architecture-spcific backend. */
169 /** Copy weight matrix into the given host buffer. Function to be specialized
170 * by the architecture-spcific backend. */
172
175
176 /** Shuffle the order of the samples in the batch. The shuffling is indirect,
177 * i.e. only the indices are shuffled. No input data is moved by this
178 * routine. */
179 template<typename RNG>
180 void Shuffle(RNG & rng);
181
182 /** Return the next batch from the training set. The TTensorDataLoader object
183 * keeps an internal counter that cycles over the batches in the training
184 * set. */
186};
187
188//
189// TTensorBatch Class.
190//______________________________________________________________________________
191template <typename Architecture_t>
192TTensorBatch<Architecture_t>::TTensorBatch(std::vector<Matrix_t> &inputTensor, Matrix_t &outputMatrix,
193 Matrix_t &weightMatrix)
194 : fInputTensor(inputTensor), fOutputMatrix(outputMatrix), fWeightMatrix(weightMatrix)
195{
196 // Nothing to do here.
197}
198
199//
200// TTensorDataLoader Class.
201//______________________________________________________________________________
202template <typename Data_t, typename Architecture_t>
203TTensorDataLoader<Data_t, Architecture_t>::TTensorDataLoader(const Data_t &data, size_t nSamples, size_t batchSize,
204 size_t batchDepth, size_t batchHeight, size_t batchWidth,
205 size_t nOutputFeatures, size_t nStreams)
206 : fData(data), fNSamples(nSamples), fBatchSize(batchSize), fBatchDepth(batchDepth), fBatchHeight(batchHeight),
207 fBatchWidth(batchWidth), fNOutputFeatures(nOutputFeatures), fBatchIndex(0), fNStreams(nStreams), fDeviceBuffers(),
208 fHostBuffers(), fSampleIndices()
209{
210 size_t inputTensorSize = fBatchDepth * fBatchHeight * fBatchWidth;
211 size_t outputMatrixSize = fBatchSize * fNOutputFeatures;
212 size_t weightMatrixSize = fBatchSize;
213
214 for (size_t i = 0; i < fNStreams; i++) {
215 fHostBuffers.push_back(HostBuffer_t(inputTensorSize + outputMatrixSize + weightMatrixSize));
216 fDeviceBuffers.push_back(DeviceBuffer_t(inputTensorSize + outputMatrixSize + weightMatrixSize));
217 }
218
219 fSampleIndices.reserve(fNSamples);
220 for (size_t i = 0; i < fNSamples; i++) {
221 fSampleIndices.push_back(i);
222 }
223}
224
225//______________________________________________________________________________
226template <typename Data_t, typename Architecture_t>
228{
229 fBatchIndex %= (fNSamples / fBatchSize); // Cycle through samples.
230
231 size_t inputTensorSize = fBatchDepth * fBatchHeight * fBatchWidth;
232 size_t outputMatrixSize = fBatchSize * fNOutputFeatures;
233 size_t weightMatrixSize = fBatchSize;
234
235 size_t streamIndex = fBatchIndex % fNStreams;
236 HostBuffer_t &hostBuffer = fHostBuffers[streamIndex];
237 DeviceBuffer_t &deviceBuffer = fDeviceBuffers[streamIndex];
238
239 HostBuffer_t inputHostBuffer = hostBuffer.GetSubBuffer(0, inputTensorSize);
240 HostBuffer_t outputHostBuffer = hostBuffer.GetSubBuffer(inputTensorSize, outputMatrixSize);
241 HostBuffer_t weightHostBuffer = hostBuffer.GetSubBuffer(inputTensorSize + outputMatrixSize, weightMatrixSize);
242
243 DeviceBuffer_t inputDeviceBuffer = deviceBuffer.GetSubBuffer(0, inputTensorSize);
244 DeviceBuffer_t outputDeviceBuffer = deviceBuffer.GetSubBuffer(inputTensorSize, outputMatrixSize);
245 DeviceBuffer_t weightDeviceBuffer = deviceBuffer.GetSubBuffer(inputTensorSize + outputMatrixSize, weightMatrixSize);
246
247 // here sample index has batch size as offset , while in
248 // copy tensor input has batch depth.
249 // We support then now two cases: batchdepth = 1 batchHeight = batch size
250 // or batch depth = batch size
251 size_t sampleIndex = fBatchIndex * fBatchSize;
252 IndexIterator_t sampleIndexIterator = fSampleIndices.begin() + sampleIndex;
253
254 CopyTensorInput(inputHostBuffer, sampleIndexIterator);
255 CopyTensorOutput(outputHostBuffer, sampleIndexIterator);
256 CopyTensorWeights(weightHostBuffer, sampleIndexIterator);
257
258 deviceBuffer.CopyFrom(hostBuffer);
259
260 std::vector<Matrix_t> inputTensor;
261 size_t jump = fBatchHeight * fBatchWidth;
262 for (size_t i = 0; i < fBatchDepth; i++) {
263 DeviceBuffer_t subInputDeviceBuffer = inputDeviceBuffer.GetSubBuffer(i * jump, jump);
264 inputTensor.emplace_back(subInputDeviceBuffer, fBatchHeight, fBatchWidth);
265 }
266 Matrix_t outputMatrix(outputDeviceBuffer, fBatchSize, fNOutputFeatures);
267 Matrix_t weightMatrix(weightDeviceBuffer, fBatchSize, fNOutputFeatures);
268
269 fBatchIndex++;
270 return TTensorBatch<Architecture_t>(inputTensor, outputMatrix, weightMatrix);
271}
272
273//______________________________________________________________________________
274template <typename Data_t, typename Architecture_t>
275template <typename RNG>
277{
278 std::shuffle(fSampleIndices.begin(), fSampleIndices.end(), rng);
279}
280
281} // namespace DNN
282} // namespace TMVA
283
284#endif
TTensorBatchIterator(TTensorDataLoader< Data_t, Architecture_t > &tensorDataLoader, size_t index=0)
TTensorBatch< Architecture_t > operator*()
bool operator!=(const TTensorBatchIterator &other)
TTensorDataLoader< Data_t, Architecture_t > & fTensorDataLoader
TTensorBatchIterator operator++()
std::vector< Matrix_t > & GetInput()
Return the tensor representing the input data.
TTensorBatch & operator=(const TTensorBatch &)=default
TTensorBatch(TTensorBatch &&)=default
TTensorBatch & operator=(TTensorBatch &&)=default
Matrix_t & GetWeights()
Return the matrix holding the event weights.
TTensorBatch(std::vector< Matrix_t > &, Matrix_t &, Matrix_t &)
Matrix_t & GetOutput()
Return the matrix representing the output data.
TTensorBatch(const TTensorBatch &)=default
std::vector< Matrix_t > fInputTensor
The input tensor batch, one matrix one input.
Matrix_t fOutputMatrix
The output matrix representing the ground truth.
typename Architecture_t::Matrix_t Matrix_t
TTensorDataLoader(const TTensorDataLoader &)=default
void Shuffle(RNG &rng)
Shuffle the order of the samples in the batch.
size_t fNOutputFeatures
The number of outputs from the classifier/regressor.
std::vector< size_t > fSampleIndices
Ordering of the samples in the epoch.
std::vector< DeviceBuffer_t > fDeviceBuffers
The device buffers used to keep the input, output and weight data.
TTensorBatch< Architecture_t > GetTensorBatch()
Return the next batch from the training set.
TTensorDataLoader & operator=(const TTensorDataLoader &)=default
typename Architecture_t::DeviceBuffer_t DeviceBuffer_t
size_t fBatchWidth
The number of columns in each matrix.
void CopyTensorOutput(HostBuffer_t &buffer, IndexIterator_t begin)
Copy output matrix into the given host buffer.
size_t fBatchIndex
The index of the batch when there are multiple batches in parallel.
size_t fBatchHeight
The number od rows in each matrix.
std::vector< HostBuffer_t > fHostBuffers
The host buffers used to load the input, output and weight data.
TTensorDataLoader(TTensorDataLoader &&)=default
size_t fBatchSize
The size of a batch.
void CopyTensorWeights(HostBuffer_t &buffer, IndexIterator_t begin)
Copy weight matrix into the given host buffer.
typename Architecture_t::Matrix_t Matrix_t
typename Architecture_t::HostBuffer_t HostBuffer_t
size_t fBatchDepth
The number of matrices in the tensor.
size_t fNStreams
Number of buffer pairs.
const Data_t & fData
The data that should be loaded in the batches.
TTensorDataLoader & operator=(TTensorDataLoader &&)=default
size_t fNSamples
The total number of samples in the dataset.
TTensorDataLoader(const Data_t &data, size_t nSamples, size_t batchSize, size_t batchDepth, size_t batchHeight, size_t batchWidth, size_t nOutputFeatures, size_t nStreams=1)
Constructor.
void CopyTensorInput(HostBuffer_t &buffer, IndexIterator_t begin)
Copy input tensor into the given host buffer.
Class that contains all the data information.
Definition: DataSetInfo.h:60
std::tuple< const std::vector< TMatrixT< Double_t > > &, const TMatrixT< Double_t > &, const TMatrixT< Double_t > & > TensorInput
typename std::vector< size_t >::iterator IndexIterator_t
Definition: DataLoader.h:42
std::tuple< const std::vector< Event * > &, const DataSetInfo & > TMVAInput_t
Definition: DataLoader.h:40
create variable transformations