Logo ROOT   6.18/05
Reference Guide
TTreeProcessorMT.cxx
Go to the documentation of this file.
1// @(#)root/thread:$Id$
2// Authors: Enric Tejedor, Enrico Guiraud CERN 05/06/2018
3
4/*************************************************************************
5 * Copyright (C) 1995-2016, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12/** \class ROOT::TTreeProcessorMT
13 \ingroup Parallelism
14 \brief A class to process the entries of a TTree in parallel.
15
16By means of its Process method, ROOT::TTreeProcessorMT provides a way to process the
17entries of a TTree in parallel. When invoking TTreeProcessor::Process, the user
18passes a function whose only parameter is a TTreeReader. The function iterates
19on a subrange of entries by using that TTreeReader.
20
21The implementation of ROOT::TTreeProcessorMT parallelizes the processing of the subranges,
22each corresponding to a cluster in the TTree. This is possible thanks to the use
23of a ROOT::TThreadedObject, so that each thread works with its own TFile and TTree
24objects.
25*/
26
27#include "TROOT.h"
30
31using namespace ROOT;
32
33namespace ROOT {
34
36
37namespace Internal {
38
39/// A cluster of entries
40struct EntryCluster {
41 Long64_t start;
42 Long64_t end;
43};
44
45////////////////////////////////////////////////////////////////////////////////
46/// Construct fChain, also adding friends if needed and injecting knowledge of offsets if available.
47void TTreeView::MakeChain(const std::string &treeName, const std::vector<std::string> &fileNames,
48 const FriendInfo &friendInfo, const std::vector<Long64_t> &nEntries,
49 const std::vector<std::vector<Long64_t>> &friendEntries)
50{
51 const std::vector<NameAlias> &friendNames = friendInfo.fFriendNames;
52 const std::vector<std::vector<std::string>> &friendFileNames = friendInfo.fFriendFileNames;
53
54 fChain.reset(new TChain(treeName.c_str()));
55 const auto nFiles = fileNames.size();
56 for (auto i = 0u; i < nFiles; ++i) {
57 fChain->Add(fileNames[i].c_str(), nEntries[i]);
58 }
60
61 fFriends.clear();
62 const auto nFriends = friendNames.size();
63 for (auto i = 0u; i < nFriends; ++i) {
64 const auto &friendName = friendNames[i];
65 const auto &name = friendName.first;
66 const auto &alias = friendName.second;
67
68 // Build a friend chain
69 auto frChain = std::make_unique<TChain>(name.c_str());
70 const auto nFileNames = friendFileNames[i].size();
71 for (auto j = 0u; j < nFileNames; ++j)
72 frChain->Add(friendFileNames[i][j].c_str(), friendEntries[i][j]);
73
74 // Make it friends with the main chain
75 fChain->AddFriend(frChain.get(), alias.c_str());
76 fFriends.emplace_back(std::move(frChain));
77 }
78}
79
82{
83 // TEntryList and SetEntriesRange do not work together (the former has precedence).
84 // We need to construct a TEntryList that contains only those entry numbers in our desired range.
85
86 std::vector<TEntryList*> globalEntryLists;
87 auto innerLists = globalList.GetLists();
88 if (!innerLists) {
89 if (globalList.GetN()) {
90 globalEntryLists.emplace_back(&globalList);
91 }
92 } else {
93 for (auto lp : *innerLists) {
94 auto lpAsTEntryList = static_cast<TEntryList *>(lp);
95 if (lpAsTEntryList->GetN()) {
96 globalEntryLists.emplace_back(lpAsTEntryList);
97 }
98 }
99 }
100
101 auto localList = std::make_unique<TEntryList>();
102
103 for (auto gl : globalEntryLists) {
104 Long64_t entry = gl->GetEntry(0);
105
106 // this may be owned by the local list
107 auto tmp_list = new TEntryList(gl->GetName(), gl->GetTitle(), gl->GetFileName(), gl->GetTreeName());
108
109 do {
110 if (entry >= end) {
111 break;
112 } else if (entry >= start) {
113 tmp_list->Enter(entry);
114 }
115 } while ((entry = gl->Next()) >= 0);
116
117 if (tmp_list->GetN() > 0) {
118 localList->Add(tmp_list);
119 } else {
120 delete tmp_list;
121 }
122 }
123
124 auto reader = std::make_unique<TTreeReader>(fChain.get(), localList.get());
125 return std::make_pair(std::move(reader), std::move(localList));
126}
127
128std::unique_ptr<TTreeReader> TTreeView::MakeReader(Long64_t start, Long64_t end)
129{
130 auto reader = std::make_unique<TTreeReader>(fChain.get());
131 reader->SetEntriesRange(start, end);
132 return reader;
133}
134
135//////////////////////////////////////////////////////////////////////////
136/// Get a TTreeReader for the current tree of this view.
138TTreeView::GetTreeReader(Long64_t start, Long64_t end, const std::string &treeName,
139 const std::vector<std::string> &fileNames, const FriendInfo &friendInfo, TEntryList entryList,
140 const std::vector<Long64_t> &nEntries, const std::vector<std::vector<Long64_t>> &friendEntries)
141{
142 const bool usingLocalEntries = friendInfo.fFriendNames.empty() && entryList.GetN() == 0;
143 if (fChain == nullptr || (usingLocalEntries && fileNames[0] != fChain->GetListOfFiles()->At(0)->GetTitle()))
144 MakeChain(treeName, fileNames, friendInfo, nEntries, friendEntries);
145
146 std::unique_ptr<TTreeReader> reader;
147 std::unique_ptr<TEntryList> localList;
148 if (entryList.GetN() > 0) {
149 std::tie(reader, localList) = MakeReaderWithEntryList(entryList, start, end);
150 } else {
151 reader = MakeReader(start, end);
152 }
153
154 // we need to return the entry list too, as it needs to be in scope as long as the reader is
155 return std::make_pair(std::move(reader), std::move(localList));
156}
157
158////////////////////////////////////////////////////////////////////////
159/// Return a vector of cluster boundaries for the given tree and files.
160// EntryClusters and number of entries per file
161using ClustersAndEntries = std::pair<std::vector<std::vector<EntryCluster>>, std::vector<Long64_t>>;
162static ClustersAndEntries MakeClusters(const std::string &treeName, const std::vector<std::string> &fileNames)
163{
164 // Note that as a side-effect of opening all files that are going to be used in the
165 // analysis once, all necessary streamers will be loaded into memory.
167 const auto nFileNames = fileNames.size();
168 std::vector<std::vector<EntryCluster>> clustersPerFile;
169 std::vector<Long64_t> entriesPerFile;
170 entriesPerFile.reserve(nFileNames);
171 Long64_t offset = 0ll;
172 for (const auto &fileName : fileNames) {
173 auto fileNameC = fileName.c_str();
174 std::unique_ptr<TFile> f(TFile::Open(fileNameC)); // need TFile::Open to load plugins if need be
175 if (!f || f->IsZombie()) {
176 Error("TTreeProcessorMT::Process", "An error occurred while opening file %s: skipping it.", fileNameC);
177 clustersPerFile.emplace_back(std::vector<EntryCluster>());
178 entriesPerFile.emplace_back(0ULL);
179 continue;
180 }
181 TTree *t = nullptr; // not a leak, t will be deleted by f
182 f->GetObject(treeName.c_str(), t);
183
184 if (!t) {
185 Error("TTreeProcessorMT::Process", "An error occurred while getting tree %s from file %s: skipping this file.",
186 treeName.c_str(), fileNameC);
187 clustersPerFile.emplace_back(std::vector<EntryCluster>());
188 entriesPerFile.emplace_back(0ULL);
189 continue;
190 }
191
192 auto clusterIter = t->GetClusterIterator(0);
193 Long64_t start = 0ll, end = 0ll;
194 const Long64_t entries = t->GetEntries();
195 // Iterate over the clusters in the current file
196 std::vector<EntryCluster> clusters;
197 while ((start = clusterIter()) < entries) {
198 end = clusterIter.GetNextEntry();
199 // Add the current file's offset to start and end to make them (chain) global
200 clusters.emplace_back(EntryCluster{start + offset, end + offset});
201 }
202 offset += entries;
203 clustersPerFile.emplace_back(std::move(clusters));
204 entriesPerFile.emplace_back(entries);
205 }
206
207 // Here we "fuse" together clusters if the number of clusters is to big with respect to
208 // the number of slots, otherwise we can incurr in an overhead which is so big to make
209 // the parallelisation detrimental for performance.
210 // For example, this is the case when following a merging of many small files a file
211 // contains a tree with many entries and with clusters of just a few entries.
212 // The criterion according to which we fuse clusters together is to have at most
213 // TTreeProcessorMT::GetMaxTasksPerFilePerWorker() clusters per file per slot.
214 // For example: given 2 files and 16 workers, at most
215 // 16 * 2 * TTreeProcessorMT::GetMaxTasksPerFilePerWorker() clusters will be created, at most
216 // 16 * TTreeProcessorMT::GetMaxTasksPerFilePerWorker() per file.
217
219 std::vector<std::vector<EntryCluster>> eventRangesPerFile(clustersPerFile.size());
220 auto clustersPerFileIt = clustersPerFile.begin();
221 auto eventRangesPerFileIt = eventRangesPerFile.begin();
222 for (; clustersPerFileIt != clustersPerFile.end(); clustersPerFileIt++, eventRangesPerFileIt++) {
223 const auto clustersInThisFileSize = clustersPerFileIt->size();
224 const auto nFolds = clustersInThisFileSize / maxTasksPerFile;
225 // If the number of clusters is less than maxTasksPerFile
226 // we take the clusters as they are
227 if (nFolds == 0) {
228 std::for_each(
229 clustersPerFileIt->begin(), clustersPerFileIt->end(),
230 [&eventRangesPerFileIt](const EntryCluster &clust) { eventRangesPerFileIt->emplace_back(clust); });
231 continue;
232 }
233 // Otherwise, we have to merge clusters, distributing the reminder evenly
234 // onto the first clusters
235 auto nReminderClusters = clustersInThisFileSize % maxTasksPerFile;
236 const auto clustersInThisFile = *clustersPerFileIt;
237 for (auto i = 0ULL; i < clustersInThisFileSize; ++i) {
238 const auto start = clustersInThisFile[i].start;
239 // We lump together at least nFolds clusters, therefore
240 // we need to jump ahead of nFolds-1.
241 i += (nFolds - 1);
242 // We now add a cluster if we have some reminder left
243 if (nReminderClusters > 0) {
244 i += 1U;
245 nReminderClusters--;
246 }
247 const auto end = clustersInThisFile[i].end;
248 eventRangesPerFileIt->emplace_back(EntryCluster({start, end}));
249 }
250 }
251
252 return std::make_pair(std::move(eventRangesPerFile), std::move(entriesPerFile));
253}
254
255////////////////////////////////////////////////////////////////////////
256/// Return a vector containing the number of entries of each file of each friend TChain
257static std::vector<std::vector<Long64_t>>
258GetFriendEntries(const std::vector<std::pair<std::string, std::string>> &friendNames,
259 const std::vector<std::vector<std::string>> &friendFileNames)
260{
261 std::vector<std::vector<Long64_t>> friendEntries;
262 const auto nFriends = friendNames.size();
263 for (auto i = 0u; i < nFriends; ++i) {
264 std::vector<Long64_t> nEntries;
265 const auto &thisFriendName = friendNames[i].first;
266 const auto &thisFriendFiles = friendFileNames[i];
267 for (const auto &fname : thisFriendFiles) {
268 std::unique_ptr<TFile> f(TFile::Open(fname.c_str()));
269 TTree *t = nullptr; // owned by TFile
270 f->GetObject(thisFriendName.c_str(), t);
271 nEntries.emplace_back(t->GetEntries());
272 }
273 friendEntries.emplace_back(std::move(nEntries));
274 }
275
276 return friendEntries;
277}
278
279////////////////////////////////////////////////////////////////////////
280/// Return the full path of the tree
281static std::string GetTreeFullPath(const TTree &tree)
282{
283 // Case 1: this is a TChain: we get the name out of the first TChainElement
284 if (0 == strcmp("TChain", tree.ClassName())) {
285 auto &chain = dynamic_cast<const TChain &>(tree);
286 auto files = chain.GetListOfFiles();
287 if (files && 0 != files->GetEntries()) {
288 return files->At(0)->GetName();
289 }
290 }
291
292 // Case 2: this is a TTree: we get the full path of it
293 if (auto motherDir = tree.GetDirectory()) {
294 // We have 2 subcases (ROOT-9948):
295 // - 1. motherDir is a TFile
296 // - 2. motherDir is a directory
297 // If 1. we just return the name of the tree, if 2. we reconstruct the path
298 // to the file.
299 if (motherDir->InheritsFrom("TFile")) {
300 return tree.GetName();
301 }
302 std::string fullPath(motherDir->GetPath());
303 fullPath += "/";
304 fullPath += tree.GetName();
305 return fullPath;
306 }
307
308 // We do our best and return the name of the tree
309 return tree.GetName();
310}
311
312} // namespace Internal
313} // namespace ROOT
314
315////////////////////////////////////////////////////////////////////////////////
316/// Get and store the names, aliases and file names of the friends of the tree.
317/// \param[in] tree The main tree whose friends to
318///
319/// Note that "friends of friends" and circular references in the lists of friends are not supported.
320Internal::FriendInfo TTreeProcessorMT::GetFriendInfo(TTree &tree)
321{
322 std::vector<Internal::NameAlias> friendNames;
323 std::vector<std::vector<std::string>> friendFileNames;
324
325 const auto friends = tree.GetListOfFriends();
326 if (!friends)
327 return Internal::FriendInfo();
328
329 for (auto fr : *friends) {
330 const auto frTree = static_cast<TFriendElement *>(fr)->GetTree();
331
332 // Check if friend tree has an alias
333 const auto realName = frTree->GetName();
334 const auto alias = tree.GetFriendAlias(frTree);
335 if (alias) {
336 friendNames.emplace_back(std::make_pair(realName, std::string(alias)));
337 } else {
338 friendNames.emplace_back(std::make_pair(realName, ""));
339 }
340
341 // Store the file names of the friend tree
342 friendFileNames.emplace_back();
343 auto &fileNames = friendFileNames.back();
344 const bool isChain = tree.IsA() == TChain::Class();
345 if (isChain) {
346 const auto frChain = static_cast<TChain *>(frTree);
347 for (auto f : *(frChain->GetListOfFiles())) {
348 fileNames.emplace_back(f->GetTitle());
349 }
350 } else {
351 const auto f = frTree->GetCurrentFile();
352 if (!f)
353 throw std::runtime_error("Friend trees with no associated file are not supported.");
354 fileNames.emplace_back(f->GetName());
355 }
356 }
357
358 return Internal::FriendInfo{std::move(friendNames), std::move(friendFileNames)};
359}
360
361////////////////////////////////////////////////////////////////////////////////
362/// Retrieve the name of the first TTree in the first input file, else throw.
364{
365 std::string treeName;
366
367 if (fFileNames.empty())
368 throw std::runtime_error("Empty list of files and no tree name provided");
369
371 std::unique_ptr<TFile> f(TFile::Open(fFileNames[0].c_str()));
372 TIter next(f->GetListOfKeys());
373 while (TKey *key = (TKey *)next()) {
374 const char *className = key->GetClassName();
375 if (strcmp(className, "TTree") == 0) {
376 treeName = key->GetName();
377 break;
378 }
379 }
380 if (treeName.empty())
381 throw std::runtime_error("Cannot find any tree in file " + fFileNames[0]);
382
383 return treeName;
384}
385
386////////////////////////////////////////////////////////////////////////
387/// Constructor based on a file name.
388/// \param[in] filename Name of the file containing the tree to process.
389/// \param[in] treename Name of the tree to process. If not provided,
390/// the implementation will automatically search for a
391/// tree in the file.
393 : fFileNames({std::string(filename)}), fTreeName(treename.empty() ? FindTreeName() : treename), fFriendInfo()
394{
395}
396
397std::vector<std::string> CheckAndConvert(const std::vector<std::string_view> &views)
398{
399 if (views.empty())
400 throw std::runtime_error("The provided list of file names is empty");
401
402 std::vector<std::string> strings;
403 strings.reserve(views.size());
404 for (const auto &v : views)
405 strings.emplace_back(v);
406 return strings;
407}
408
409////////////////////////////////////////////////////////////////////////
410/// Constructor based on a collection of file names.
411/// \param[in] filenames Collection of the names of the files containing the tree to process.
412/// \param[in] treename Name of the tree to process. If not provided,
413/// the implementation will automatically search for a
414/// tree in the collection of files.
415TTreeProcessorMT::TTreeProcessorMT(const std::vector<std::string_view> &filenames, std::string_view treename)
416 : fFileNames(CheckAndConvert(filenames)), fTreeName(treename.empty() ? FindTreeName() : treename), fFriendInfo()
417{
418}
419
420std::vector<std::string> GetFilesFromTree(TTree &tree)
421{
422 std::vector<std::string> filenames;
423
424 const bool isChain = tree.IsA() == TChain::Class();
425 if (isChain) {
426 TObjArray *filelist = static_cast<TChain &>(tree).GetListOfFiles();
427 const auto nFiles = filelist->GetEntries();
428 if (nFiles == 0)
429 throw std::runtime_error("The provided chain of files is empty");
430 filenames.reserve(nFiles);
431 for (auto f : *filelist)
432 filenames.emplace_back(f->GetTitle());
433 } else {
434 TFile *f = tree.GetCurrentFile();
435 if (!f) {
436 const auto msg = "The specified TTree is not linked to any file, in-memory-only trees are not supported.";
437 throw std::runtime_error(msg);
438 }
439
440 filenames.emplace_back(f->GetName());
441 }
442
443 return filenames;
444}
445
446////////////////////////////////////////////////////////////////////////
447/// Constructor based on a TTree and a TEntryList.
448/// \param[in] tree Tree or chain of files containing the tree to process.
449/// \param[in] entries List of entry numbers to process.
451 : fFileNames(GetFilesFromTree(tree)), fTreeName(ROOT::Internal::GetTreeFullPath(tree)), fEntryList(entries),
452 fFriendInfo(GetFriendInfo(tree))
453{
454}
455
456////////////////////////////////////////////////////////////////////////
457/// Constructor based on a TTree.
458/// \param[in] tree Tree or chain of files containing the tree to process.
460
461//////////////////////////////////////////////////////////////////////////////
462/// Process the entries of a TTree in parallel. The user-provided function
463/// receives a TTreeReader which can be used to iterate on a subrange of
464/// entries
465/// ~~~{.cpp}
466/// TTreeProcessorMT::Process([](TTreeReader& readerSubRange) {
467/// // Select branches to read
468/// while (readerSubRange.Next()) {
469/// // Use content of current entry
470/// }
471/// });
472/// ~~~
473/// The user needs to be aware that each of the subranges can potentially
474/// be processed in parallel. This means that the code of the user function
475/// should be thread safe.
476///
477/// \param[in] func User-defined function that processes a subrange of entries
479{
480 const std::vector<Internal::NameAlias> &friendNames = fFriendInfo.fFriendNames;
481 const std::vector<std::vector<std::string>> &friendFileNames = fFriendInfo.fFriendFileNames;
482
483 // If an entry list or friend trees are present, we need to generate clusters with global entry numbers,
484 // so we do it here for all files.
485 const bool hasFriends = !friendNames.empty();
486 const bool hasEntryList = fEntryList.GetN() > 0;
487 const bool shouldRetrieveAllClusters = hasFriends || hasEntryList;
488 const auto clustersAndEntries =
490 const auto &clusters = clustersAndEntries.first;
491 const auto &entries = clustersAndEntries.second;
492
493 // Retrieve number of entries for each file for each friend tree
494 const auto friendEntries =
495 hasFriends ? Internal::GetFriendEntries(friendNames, friendFileNames) : std::vector<std::vector<Long64_t>>{};
496
497 TThreadExecutor pool;
498 // Parent task, spawns tasks that process each of the entry clusters for each input file
499 using Internal::EntryCluster;
500 auto processFile = [&](std::size_t fileIdx) {
501 // theseFiles contains either all files or just the single file to process
502 const auto &theseFiles = shouldRetrieveAllClusters ? fFileNames : std::vector<std::string>({fFileNames[fileIdx]});
503 // Evaluate clusters (with local entry numbers) and number of entries for this file, if needed
504 const auto theseClustersAndEntries =
505 shouldRetrieveAllClusters ? Internal::ClustersAndEntries{} : Internal::MakeClusters(fTreeName, theseFiles);
506
507 // All clusters for the file to process, either with global or local entry numbers
508 const auto &thisFileClusters = shouldRetrieveAllClusters ? clusters[fileIdx] : theseClustersAndEntries.first[0];
509
510 // Either all number of entries or just the ones for this file
511 const auto &theseEntries =
512 shouldRetrieveAllClusters ? entries : std::vector<Long64_t>({theseClustersAndEntries.second[0]});
513
514 auto processCluster = [&](const Internal::EntryCluster &c) {
515 std::unique_ptr<TTreeReader> reader;
516 std::unique_ptr<TEntryList> elist;
517 std::tie(reader, elist) = fTreeView->GetTreeReader(c.start, c.end, fTreeName, theseFiles, fFriendInfo,
518 fEntryList, theseEntries, friendEntries);
519 func(*reader);
520 };
521
522 pool.Foreach(processCluster, thisFileClusters);
523 };
524
525 std::vector<std::size_t> fileIdxs(fFileNames.size());
526 std::iota(fileIdxs.begin(), fileIdxs.end(), 0u);
527
528 // Enable this IMT use case (activate its locks)
530
531 pool.Foreach(processFile, fileIdxs);
532}
533
534////////////////////////////////////////////////////////////////////////
535/// \brief Sets the maximum number of tasks created per file, per worker.
536/// \return The maximum number of tasks created per file, per worker
538{
540}
541
542////////////////////////////////////////////////////////////////////////
543/// \brief Sets the maximum number of tasks created per file, per worker.
544/// \param[in] maxTasksPerFile Name of the file containing the tree to process.
545///
546/// This allows to create a reasonable number of tasks even if any of the
547/// processed files features a bad clustering, for example with a lot of
548/// entries and just a few entries per cluster.
549void TTreeProcessorMT::SetMaxTasksPerFilePerWorker(unsigned int maxTasksPerFile)
550{
551 fgMaxTasksPerFilePerWorker = maxTasksPerFile;
552}
void Class()
Definition: Class.C:29
SVector< double, 2 > v
Definition: Dict.h:5
#define f(i)
Definition: RSha256.hxx:104
#define c(i)
Definition: RSha256.hxx:101
long long Long64_t
Definition: RtypesCore.h:69
#define gDirectory
Definition: TDirectory.h:218
void Error(const char *location, const char *msgfmt,...)
char name[80]
Definition: TGX11.cxx:109
std::vector< std::string > GetFilesFromTree(TTree &tree)
std::vector< std::string > CheckAndConvert(const std::vector< std::string_view > &views)
std::pair< std::unique_ptr< TTreeReader >, std::unique_ptr< TEntryList > > TreeReaderEntryListPair
std::unique_ptr< TChain > fChain
Chain on which to operate.
std::vector< std::unique_ptr< TChain > > fFriends
Friends of the tree/chain.
TreeReaderEntryListPair GetTreeReader(Long64_t start, Long64_t end, const std::string &treeName, const std::vector< std::string > &fileNames, const FriendInfo &friendInfo, TEntryList entryList, const std::vector< Long64_t > &nEntries, const std::vector< std::vector< Long64_t > > &friendEntries)
Get a TTreeReader for the current tree of this view.
std::unique_ptr< TTreeReader > MakeReader(Long64_t start, Long64_t end)
void MakeChain(const std::string &treeName, const std::vector< std::string > &fileNames, const FriendInfo &friendInfo, const std::vector< Long64_t > &nEntries, const std::vector< std::vector< Long64_t > > &friendEntries)
Construct fChain, also adding friends if needed and injecting knowledge of offsets if available.
TreeReaderEntryListPair MakeReaderWithEntryList(TEntryList &globalList, Long64_t start, Long64_t end)
This class provides a simple interface to execute the same task multiple times in parallel,...
void Foreach(F func, unsigned nTimes, unsigned nChunks=0)
Execute func (with no arguments) nTimes in parallel.
A class to process the entries of a TTree in parallel.
static unsigned int GetMaxTasksPerFilePerWorker()
Sets the maximum number of tasks created per file, per worker.
const std::string fTreeName
Name of the tree.
const std::vector< std::string > fFileNames
Names of the files.
static void SetMaxTasksPerFilePerWorker(unsigned int m)
Sets the maximum number of tasks created per file, per worker.
static unsigned int fgMaxTasksPerFilePerWorker
TTreeProcessorMT(std::string_view filename, std::string_view treename="")
Constructor based on a file name.
const TEntryList fEntryList
User-defined selection of entry numbers to be processed, empty if none was provided.
ROOT::TThreadedObject< ROOT::Internal::TTreeView > fTreeView
! Thread-local TreeViews
void Process(std::function< void(TTreeReader &)> func)
Process the entries of a TTree in parallel.
const Internal::FriendInfo fFriendInfo
std::string FindTreeName()
Retrieve the name of the first TTree in the first input file, else throw.
A chain is a collection of files containing TTree objects.
Definition: TChain.h:34
TObjArray * GetListOfFiles() const
Definition: TChain.h:108
A List of entry numbers in a TTree or TChain.
Definition: TEntryList.h:26
virtual TList * GetLists() const
Definition: TEntryList.h:73
virtual Long64_t GetN() const
Definition: TEntryList.h:75
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition: TFile.h:48
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseGeneralPurpose, Int_t netopt=0)
Create / open a file.
Definition: TFile.cxx:3980
A TFriendElement TF describes a TTree object TF in a file.
Book space in a file, create I/O buffers, to fill them, (un)compress them.
Definition: TKey.h:24
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
An array of TObjects.
Definition: TObjArray.h:37
Int_t GetEntries() const
Return the number of objects in array (i.e.
Definition: TObjArray.cxx:522
TObject * At(Int_t idx) const
Definition: TObjArray.h:166
virtual const char * GetName() const
Returns name of object.
Definition: TObject.cxx:357
@ kMustCleanup
if object destructor must call RecursiveRemove()
Definition: TObject.h:60
A simple, robust and fast interface to read values from ROOT columnar datasets such as TTree,...
Definition: TTreeReader.h:44
A TTree represents a columnar dataset.
Definition: TTree.h:71
virtual TClusterIterator GetClusterIterator(Long64_t firstentry)
Return an iterator over the cluster of baskets starting at firstentry.
Definition: TTree.cxx:5251
virtual Long64_t GetEntries() const
Definition: TTree.h:402
basic_string_view< char > string_view
std::pair< std::vector< std::vector< EntryCluster > >, std::vector< Long64_t > > ClustersAndEntries
Return a vector of cluster boundaries for the given tree and files.
static std::vector< std::vector< Long64_t > > GetFriendEntries(const std::vector< std::pair< std::string, std::string > > &friendNames, const std::vector< std::vector< std::string > > &friendFileNames)
Return a vector containing the number of entries of each file of each friend TChain.
static ClustersAndEntries MakeClusters(const std::string &treeName, const std::vector< std::string > &fileNames)
static std::string GetTreeFullPath(const TTree &tree)
Return the full path of the tree.
void function(const Char_t *name_, T fun, const Char_t *docstring=0)
Definition: RExports.h:151
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
UInt_t GetImplicitMTPoolSize()
Returns the size of the pool used for implicit multi-threading.
Definition: TROOT.cxx:617
Definition: tree.py:1
std::vector< std::vector< std::string > > fFriendFileNames
Names of the files where each friend is stored.
std::vector< Internal::NameAlias > fFriendNames
Pairs of names and aliases of friend trees/chains.