Logo ROOT   6.18/05
Reference Guide
TGeoHype.cxx
Go to the documentation of this file.
1// @(#)root/geom:$Id$
2// Author: Mihaela Gheata 20/11/04
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12
13#include "Riostream.h"
14
15#include "TGeoManager.h"
16#include "TGeoVolume.h"
17#include "TVirtualGeoPainter.h"
18#include "TGeoHype.h"
19#include "TVirtualPad.h"
20#include "TBuffer3D.h"
21#include "TBuffer3DTypes.h"
22#include "TMath.h"
23
24/** \class TGeoHype
25\ingroup Geometry_classes
26
27Hyperboloid class defined by 5 parameters. Bounded by:
28 - Two z planes at z=+/-dz
29 - Inner and outer lateral surfaces. These represent the surfaces
30 described by the revolution of 2 hyperbolas about the Z axis:
31 r^2 - (t*z)^2 = a^2
32
33 - r = distance between hyperbola and Z axis at coordinate z
34 - t = tangent of the stereo angle (angle made by hyperbola
35 asymptotic lines and Z axis). t=0 means cylindrical surface.
36 - a = distance between hyperbola and Z axis at z=0
37
38The inner hyperbolic surface is described by:
39 r^2 - (tin*z)^2 = rin^2
40 - absence of the inner surface (filled hyperboloid can be forced
41 by rin=0 and sin=0
42The outer hyperbolic surface is described by:
43 r^2 - (tout*z)^2 = rout^2
44TGeoHype parameters: dz[cm], rin[cm], sin[deg], rout[cm], sout[deg].
45MANDATORY conditions:
46
47 - rin < rout
48 - rout > 0
49 - rin^2 + (tin*dz)^2 > rout^2 + (tout*dz)^2
50
51SUPPORTED CASES:
52
53 - rin = 0, tin != 0 => inner surface conical
54 - tin=0 AND/OR tout=0 => corresponding surface(s) cylindrical
55 e.g. tin=0 AND tout=0 => shape becomes a tube with: rmin,rmax,dz
56*/
57
59
60////////////////////////////////////////////////////////////////////////////////
61/// Default constructor
62
64{
66 fStIn = 0.;
67 fStOut = 0.;
68 fTin = 0.;
69 fTinsq = 0.;
70 fTout = 0.;
71 fToutsq = 0.;
72}
73
74
75////////////////////////////////////////////////////////////////////////////////
76/// Constructor specifying hyperboloid parameters.
77
79 :TGeoTube(rin, rout, dz)
80{
82 SetHypeDimensions(rin, stin, rout, stout, dz);
83 // dz<0 can be used to force dz of hyperboloid fit the container volume
86}
87////////////////////////////////////////////////////////////////////////////////
88/// Constructor specifying parameters and name.
89
90TGeoHype::TGeoHype(const char *name,Double_t rin, Double_t stin, Double_t rout, Double_t stout, Double_t dz)
91 :TGeoTube(name, rin, rout, dz)
92{
94 SetHypeDimensions(rin, stin, rout, stout, dz);
95 // dz<0 can be used to force dz of hyperboloid fit the container volume
98}
99
100////////////////////////////////////////////////////////////////////////////////
101/// Default constructor specifying a list of parameters
102/// - param[0] = dz
103/// - param[1] = rin
104/// - param[2] = stin
105/// - param[3] = rout
106/// - param[4] = stout
107
109 :TGeoTube(param[1],param[3],param[0])
110{
112 SetDimensions(param);
113 // dz<0 can be used to force dz of hyperboloid fit the container volume
115 ComputeBBox();
116}
117
118////////////////////////////////////////////////////////////////////////////////
119/// destructor
120
122{
123}
124
125////////////////////////////////////////////////////////////////////////////////
126/// Computes capacity of the shape in [length^3]
127
129{
130 Double_t capacity = 2.*TMath::Pi()*fDz*(fRmax*fRmax-fRmin*fRmin) +
131 (2.*TMath::Pi()/3.)*fDz*fDz*fDz*(fToutsq-fTinsq);
132 return capacity;
133}
134
135////////////////////////////////////////////////////////////////////////////////
136/// Compute bounding box of the hyperboloid
137
139{
140 if (fRmin<0.) {
141 Warning("ComputeBBox", "Shape %s has invalid rmin=%g ! SET TO 0.", GetName(),fRmin);
142 fRmin = 0.;
143 }
146 Error("ComputeBBox", "Shape %s hyperbolic surfaces are malformed: rin=%g, stin=%g, rout=%g, stout=%g",
148 return;
149 }
150
152 fDZ = fDz;
153}
154
155////////////////////////////////////////////////////////////////////////////////
156/// Compute normal to closest surface from POINT.
157
158void TGeoHype::ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
159{
160 Double_t saf[3];
161 Double_t rsq = point[0]*point[0]+point[1]*point[1];
162 Double_t r = TMath::Sqrt(rsq);
163 Double_t rin = (HasInner())?(TMath::Sqrt(RadiusHypeSq(point[2],kTRUE))):0.;
164 Double_t rout = TMath::Sqrt(RadiusHypeSq(point[2],kFALSE));
165 saf[0] = TMath::Abs(fDz-TMath::Abs(point[2]));
166 saf[1] = (HasInner())?TMath::Abs(rin-r):TGeoShape::Big();
167 saf[2] = TMath::Abs(rout-r);
168 Int_t i = TMath::LocMin(3,saf);
169 if (i==0 || r<1.E-10) {
170 norm[0] = norm[1] = 0.;
171 norm[2] = TMath::Sign(1.,dir[2]);
172 return;
173 }
174 Double_t t = (i==1)?fTinsq:fToutsq;;
175 t *= -point[2]/r;
176 Double_t ct = TMath::Sqrt(1./(1.+t*t));
177 Double_t st = t * ct;
178 Double_t phi = TMath::ATan2(point[1], point[0]);
179 Double_t cphi = TMath::Cos(phi);
180 Double_t sphi = TMath::Sin(phi);
181
182 norm[0] = ct*cphi;
183 norm[1] = ct*sphi;
184 norm[2] = st;
185 if (norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2]<0) {
186 norm[0] = -norm[0];
187 norm[1] = -norm[1];
188 norm[2] = -norm[2];
189 }
190}
191
192////////////////////////////////////////////////////////////////////////////////
193/// test if point is inside this tube
194
196{
197 if (TMath::Abs(point[2]) > fDz) return kFALSE;
198 Double_t r2 = point[0]*point[0]+point[1]*point[1];
199 Double_t routsq = RadiusHypeSq(point[2], kFALSE);
200 if (r2>routsq) return kFALSE;
201 if (!HasInner()) return kTRUE;
202 Double_t rinsq = RadiusHypeSq(point[2], kTRUE);
203 if (r2<rinsq) return kFALSE;
204 return kTRUE;
205}
206
207////////////////////////////////////////////////////////////////////////////////
208/// compute closest distance from point px,py to each corner
209
211{
212 Int_t numPoints = GetNmeshVertices();
213 return ShapeDistancetoPrimitive(numPoints, px, py);
214}
215
216////////////////////////////////////////////////////////////////////////////////
217/// Compute distance from inside point to surface of the hyperboloid.
218
219Double_t TGeoHype::DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
220{
221 if (iact<3 && safe) {
222 *safe = Safety(point, kTRUE);
223 if (iact==0) return TGeoShape::Big();
224 if ((iact==1) && (*safe>step)) return TGeoShape::Big();
225 }
226 // compute distance to surface
227 // Do Z
229 if (dir[2]>0) {
230 sz = (fDz-point[2])/dir[2];
231 if (sz<=0.) return 0.;
232 } else {
233 if (dir[2]<0) {
234 sz = -(fDz+point[2])/dir[2];
235 if (sz<=0.) return 0.;
236 }
237 }
238
239
240 // Do R
241 Double_t srin = TGeoShape::Big();
242 Double_t srout = TGeoShape::Big();
243 Double_t sr;
244 // inner and outer surfaces
245 Double_t s[2];
246 Int_t npos;
247 npos = DistToHype(point, dir, s, kTRUE, kTRUE);
248 if (npos) srin = s[0];
249 npos = DistToHype(point, dir, s, kFALSE, kTRUE);
250 if (npos) srout = s[0];
251 sr = TMath::Min(srin, srout);
252 return TMath::Min(sz,sr);
253}
254
255
256////////////////////////////////////////////////////////////////////////////////
257/// compute distance from outside point to surface of the hyperboloid.
258
259Double_t TGeoHype::DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
260{
261 if (iact<3 && safe) {
262 *safe = Safety(point, kFALSE);
263 if (iact==0) return TGeoShape::Big();
264 if ((iact==1) && (step<=*safe)) return TGeoShape::Big();
265 }
266// Check if the bounding box is crossed within the requested distance
267 Double_t sdist = TGeoBBox::DistFromOutside(point,dir, fDX, fDY, fDZ, fOrigin, step);
268 if (sdist>=step) return TGeoShape::Big();
269 // find distance to shape
270 // Do Z
271 Double_t xi, yi, zi;
273 if (TMath::Abs(point[2])>=fDz) {
274 // We might find Z plane crossing
275 if ((point[2]*dir[2]) < 0) {
276 // Compute distance to Z (always positive)
277 sz = (TMath::Abs(point[2])-fDz)/TMath::Abs(dir[2]);
278 // Extrapolate
279 xi = point[0]+sz*dir[0];
280 yi = point[1]+sz*dir[1];
281 Double_t r2 = xi*xi + yi*yi;
282 Double_t rmin2 = RadiusHypeSq(fDz, kTRUE);
283 if (r2 >= rmin2) {
285 if (r2 <= rmax2) return sz;
286 }
287 }
288 }
289 // We do not cross Z planes.
291 Double_t sout = TGeoShape::Big();
292 Double_t s[2];
293 Int_t npos;
294 npos = DistToHype(point, dir, s, kTRUE, kFALSE);
295 if (npos) {
296 zi = point[2] + s[0]*dir[2];
297 if (TMath::Abs(zi) <= fDz) sin = s[0];
298 else if (npos==2) {
299 zi = point[2] + s[1]*dir[2];
300 if (TMath::Abs(zi) <= fDz) sin = s[1];
301 }
302 }
303 npos = DistToHype(point, dir, s, kFALSE, kFALSE);
304 if (npos) {
305 zi = point[2] + s[0]*dir[2];
306 if (TMath::Abs(zi) <= fDz) sout = s[0];
307 else if (npos==2) {
308 zi = point[2] + s[1]*dir[2];
309 if (TMath::Abs(zi) <= fDz) sout = s[1];
310 }
311 }
312 return TMath::Min(sin, sout);
313}
314
315////////////////////////////////////////////////////////////////////////////////
316/// Compute distance from an arbitrary point to inner/outer surface of hyperboloid.
317/// Returns number of positive solutions. S[2] contains the solutions.
318
319Int_t TGeoHype::DistToHype(const Double_t *point, const Double_t *dir, Double_t *s, Bool_t inner, Bool_t in) const
320{
321 Double_t r0, t0, snext;
322 if (inner) {
323 if (!HasInner()) return 0;
324 r0 = fRmin;
325 t0 = fTinsq;
326 } else {
327 r0 = fRmax;
328 t0 = fToutsq;
329 }
330 Double_t a = dir[0]*dir[0] + dir[1]*dir[1] - t0*dir[2]*dir[2];
331 Double_t b = t0*point[2]*dir[2] - point[0]*dir[0] - point[1]*dir[1];
332 Double_t c = point[0]*point[0] + point[1]*point[1] - t0*point[2]*point[2] - r0*r0;
333
335 if (TMath::Abs(b) < TGeoShape::Tolerance()) return 0;
336 snext = 0.5*c/b;
337 if (snext < 0.) return 0;
338 s[0] = snext;
339 return 1;
340 }
341
342 Double_t delta = b*b - a*c;
343 Double_t ainv = 1./a;
344 Int_t npos = 0;
345 if (delta < 0.) return 0;
346 delta = TMath::Sqrt(delta);
347 Double_t sone = TMath::Sign(1.,ainv);
348 Int_t i = -1;
349 while (i<2) {
350 snext = (b + i*sone*delta)*ainv;
351 i += 2;
352 if (snext<0) continue;
353 if (snext<1.E-8) {
354 Double_t r = TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
355 Double_t t = (inner)?fTinsq:fToutsq;
356 t *= -point[2]/r;
357 Double_t phi = TMath::ATan2(point[1], point[0]);
358 Double_t ndotd = TMath::Cos(phi)*dir[0]+TMath::Sin(phi)*dir[1]+t*dir[2];
359 if (inner) ndotd *= -1;
360 if (in) ndotd *= -1;
361 if (ndotd<0) s[npos++] = snext;
362 } else s[npos++] = snext;
363 }
364 return npos;
365}
366
367////////////////////////////////////////////////////////////////////////////////
368/// Cannot divide hyperboloids.
369
370TGeoVolume *TGeoHype::Divide(TGeoVolume * /*voldiv*/, const char *divname, Int_t /*iaxis*/, Int_t /*ndiv*/,
371 Double_t /*start*/, Double_t /*step*/)
372{
373 Error("Divide", "Hyperboloids cannot be divided. Division volume %s not created", divname);
374 return 0;
375}
376
377////////////////////////////////////////////////////////////////////////////////
378/// Get range of shape for a given axis.
379
381{
382 xlo = 0;
383 xhi = 0;
384 Double_t dx = 0;
385 switch (iaxis) {
386 case 1: // R
387 xlo = fRmin;
389 dx = xhi-xlo;
390 return dx;
391 case 2: // Phi
392 xlo = 0;
393 xhi = 360;
394 dx = 360;
395 return dx;
396 case 3: // Z
397 xlo = -fDz;
398 xhi = fDz;
399 dx = xhi-xlo;
400 return dx;
401 }
402 return dx;
403}
404
405////////////////////////////////////////////////////////////////////////////////
406/// Fill vector param[4] with the bounding cylinder parameters. The order
407/// is the following : Rmin, Rmax, Phi1, Phi2, dZ
408
410{
411 param[0] = fRmin; // Rmin
412 param[0] *= param[0];
413 param[1] = TMath::Sqrt(RadiusHypeSq(fDz, kFALSE)); // Rmax
414 param[1] *= param[1];
415 param[2] = 0.; // Phi1
416 param[3] = 360.; // Phi2
417}
418
419////////////////////////////////////////////////////////////////////////////////
420/// in case shape has some negative parameters, these has to be computed
421/// in order to fit the mother
422
424{
425 if (!TestShapeBit(kGeoRunTimeShape)) return 0;
426 Double_t dz;
427 Double_t zmin,zmax;
428 dz = fDz;
429 if (fDz<0) {
430 mother->GetAxisRange(3,zmin,zmax);
431 if (zmax<0) return 0;
432 dz=zmax;
433 } else {
434 Error("GetMakeRuntimeShape", "Shape %s does not have negative Z range", GetName());
435 return 0;
436 }
437 TGeoShape *hype = new TGeoHype(GetName(), dz, fRmax, fStOut, fRmin, fStIn);
438 return hype;
439}
440
441////////////////////////////////////////////////////////////////////////////////
442/// print shape parameters
443
445{
446 printf("*** Shape %s: TGeoHype ***\n", GetName());
447 printf(" Rin = %11.5f\n", fRmin);
448 printf(" sin = %11.5f\n", fStIn);
449 printf(" Rout = %11.5f\n", fRmax);
450 printf(" sout = %11.5f\n", fStOut);
451 printf(" dz = %11.5f\n", fDz);
452
453 printf(" Bounding box:\n");
455}
456
457////////////////////////////////////////////////////////////////////////////////
458/// Creates a TBuffer3D describing *this* shape.
459/// Coordinates are in local reference frame.
460
462{
464 Bool_t hasRmin = HasInner();
465 Int_t nbPnts = (hasRmin)?(2*n*n):(n*n+2);
466 Int_t nbSegs = (hasRmin)?(4*n*n):(n*(2*n+1));
467 Int_t nbPols = (hasRmin)?(2*n*n):(n*(n+1));
468
470 nbPnts, 3*nbPnts, nbSegs, 3*nbSegs, nbPols, 6*nbPols);
471 if (buff)
472 {
473 SetPoints(buff->fPnts);
474 SetSegsAndPols(*buff);
475 }
476
477 return buff;
478}
479
480////////////////////////////////////////////////////////////////////////////////
481/// Fill TBuffer3D structure for segments and polygons.
482
484{
486 Int_t i, j, n;
488 Bool_t hasRmin = HasInner();
489 Int_t irin = 0;
490 Int_t irout = (hasRmin)?(n*n):2;
491 // Fill segments
492 // Case hasRmin:
493 // Inner circles: [isin = 0], n (per circle) * n ( circles)
494 // iseg = isin+n*i+j , i = 0, n-1 , j = 0, n-1
495 // seg(i=1,n; j=1,n) = [irin+n*i+j] and [irin+n*i+(j+1)%n]
496 // Inner generators: [isgenin = isin+n*n], n (per circle) *(n-1) (slices)
497 // iseg = isgenin + i*n + j, i=0,n-2, j=0,n-1
498 // seg(i,j) = [irin+n*i+j] and [irin+n*(i+1)+j]
499 // Outer circles: [isout = isgenin+n*(n-1)], n (per circle) * n ( circles)
500 // iseg = isout + i*n + j , iz = 0, n-1 , j = 0, n-1
501 // seg(i=1,n; j=1,n) = [irout+n*i+j] and [irout+n*i+(j+1)%n]
502 // Outer generators: [isgenout = isout+n*n], n (per circle) *(n-1) (slices)
503 // iseg = isgenout + i*n + j, i=0,n-2, j=0,n-1
504 // seg(i,j) = [irout+n*i+j] and [irout+n*(i+1)+j]
505 // Lower cap : [islow = isgenout + n*(n-1)], n radial segments
506 // iseg = islow + j, j=0,n-1
507 // seg(j) = [irin + j] and [irout+j]
508 // Upper cap: [ishi = islow + n], nradial segments
509 // iseg = ishi + j, j=0,n-1
510 // seg[j] = [irin + n*(n-1) + j] and [irout+n*(n-1) + j]
511 //
512 // Case !hasRmin:
513 // Outer circles: [isout=0], same outer circles (n*n)
514 // Outer generators: isgenout = isout + n*n
515 // Lower cap: [islow = isgenout+n*(n-1)], n seg.
516 // iseg = islow + j, j=0,n-1
517 // seg[j] = [irin] and [irout+j]
518 // Upper cap: [ishi = islow +n]
519 // iseg = ishi + j, j=0,n-1
520 // seg[j] = [irin+1] and [irout+n*(n-1) + j]
521
522 Int_t isin = 0;
523 Int_t isgenin = (hasRmin)?(isin+n*n):0;
524 Int_t isout = (hasRmin)?(isgenin+n*(n-1)):0;
525 Int_t isgenout = isout+n*n;
526 Int_t islo = isgenout+n*(n-1);
527 Int_t ishi = islo + n;
528
529 Int_t npt = 0;
530 // Fill inner circle segments (n*n)
531 if (hasRmin) {
532 for (i=0; i<n; i++) {
533 for (j=0; j<n; j++) {
534 npt = 3*(isin+n*i+j);
535 buff.fSegs[npt] = c;
536 buff.fSegs[npt+1] = irin+n*i+j;
537 buff.fSegs[npt+2] = irin+n*i+((j+1)%n);
538 }
539 }
540 // Fill inner generators (n*(n-1))
541 for (i=0; i<n-1; i++) {
542 for (j=0; j<n; j++) {
543 npt = 3*(isgenin+n*i+j);
544 buff.fSegs[npt] = c;
545 buff.fSegs[npt+1] = irin+n*i+j;
546 buff.fSegs[npt+2] = irin+n*(i+1)+j;
547 }
548 }
549 }
550 // Fill outer circle segments (n*n)
551 for (i=0; i<n; i++) {
552 for (j=0; j<n; j++) {
553 npt = 3*(isout + n*i+j);
554 buff.fSegs[npt] = c;
555 buff.fSegs[npt+1] = irout+n*i+j;
556 buff.fSegs[npt+2] = irout+n*i+((j+1)%n);
557 }
558 }
559 // Fill outer generators (n*(n-1))
560 for (i=0; i<n-1; i++) {
561 for (j=0; j<n; j++) {
562 npt = 3*(isgenout+n*i+j);
563 buff.fSegs[npt] = c;
564 buff.fSegs[npt+1] = irout+n*i+j;
565 buff.fSegs[npt+2] = irout+n*(i+1)+j;
566 }
567 }
568 // Fill lower cap (n)
569 for (j=0; j<n; j++) {
570 npt = 3*(islo+j);
571 buff.fSegs[npt] = c;
572 buff.fSegs[npt+1] = irin;
573 if (hasRmin) buff.fSegs[npt+1] += j;
574 buff.fSegs[npt+2] = irout + j;
575 }
576 // Fill upper cap (n)
577 for (j=0; j<n; j++) {
578 npt = 3*(ishi+j);
579 buff.fSegs[npt] = c;
580 buff.fSegs[npt+1] = irin+1;
581 if (hasRmin) buff.fSegs[npt+1] += n*(n-1)+j-1;
582 buff.fSegs[npt+2] = irout + n*(n-1)+j;
583 }
584
585 // Fill polygons
586 // Inner polygons: [ipin = 0] (n-1) slices * n (edges)
587 // ipoly = ipin + n*i + j; i=0,n-2 j=0,n-1
588 // poly[i,j] = [isin+n*i+j] [isgenin+i*n+(j+1)%n] [isin+n*(i+1)+j] [isgenin+i*n+j]
589 // Outer polygons: [ipout = ipin+n*(n-1)] also (n-1)*n
590 // ipoly = ipout + n*i + j; i=0,n-2 j=0,n-1
591 // poly[i,j] = [isout+n*i+j] [isgenout+i*n+j] [isout+n*(i+1)+j] [isgenout+i*n+(j+1)%n]
592 // Lower cap: [iplow = ipout+n*(n-1): n polygons
593 // ipoly = iplow + j; j=0,n-1
594 // poly[i=0,j] = [isin+j] [islow+j] [isout+j] [islow+(j+1)%n]
595 // Upper cap: [ipup = iplow+n] : n polygons
596 // ipoly = ipup + j; j=0,n-1
597 // poly[i=n-1, j] = [isin+n*(n-1)+j] [ishi+(j+1)%n] [isout+n*(n-1)+j] [ishi+j]
598 //
599 // Case !hasRmin:
600 // ipin = 0 no inner polygons
601 // ipout = 0 same outer polygons
602 // Lower cap: iplow = ipout+n*(n-1): n polygons with 3 segments
603 // poly[i=0,j] = [isout+j] [islow+(j+1)%n] [islow+j]
604 // Upper cap: ipup = iplow+n;
605 // poly[i=n-1,j] = [isout+n*(n-1)+j] [ishi+j] [ishi+(j+1)%n]
606
607 Int_t ipin = 0;
608 Int_t ipout = (hasRmin)?(ipin+n*(n-1)):0;
609 Int_t iplo = ipout+n*(n-1);
610 Int_t ipup = iplo+n;
611 // Inner polygons n*(n-1)
612 if (hasRmin) {
613 for (i=0; i<n-1; i++) {
614 for (j=0; j<n; j++) {
615 npt = 6*(ipin+n*i+j);
616 buff.fPols[npt] = c;
617 buff.fPols[npt+1] = 4;
618 buff.fPols[npt+2] = isin+n*i+j;
619 buff.fPols[npt+3] = isgenin+i*n+((j+1)%n);
620 buff.fPols[npt+4] = isin+n*(i+1)+j;
621 buff.fPols[npt+5] = isgenin+i*n+j;
622 }
623 }
624 }
625 // Outer polygons n*(n-1)
626 for (i=0; i<n-1; i++) {
627 for (j=0; j<n; j++) {
628 npt = 6*(ipout+n*i+j);
629 buff.fPols[npt] = c;
630 buff.fPols[npt+1] = 4;
631 buff.fPols[npt+2] = isout+n*i+j;
632 buff.fPols[npt+3] = isgenout+i*n+j;
633 buff.fPols[npt+4] = isout+n*(i+1)+j;
634 buff.fPols[npt+5] = isgenout+i*n+((j+1)%n);
635 }
636 }
637 // End caps
638 if (hasRmin) {
639 for (j=0; j<n; j++) {
640 npt = 6*(iplo+j);
641 buff.fPols[npt] = c+1;
642 buff.fPols[npt+1] = 4;
643 buff.fPols[npt+2] = isin+j;
644 buff.fPols[npt+3] = islo+j;
645 buff.fPols[npt+4] = isout+j;
646 buff.fPols[npt+5] = islo+((j+1)%n);
647 }
648 for (j=0; j<n; j++) {
649 npt = 6*(ipup+j);
650 buff.fPols[npt] = c+2;
651 buff.fPols[npt+1] = 4;
652 buff.fPols[npt+2] = isin+n*(n-1)+j;
653 buff.fPols[npt+3] = ishi+((j+1)%n);
654 buff.fPols[npt+4] = isout+n*(n-1)+j;
655 buff.fPols[npt+5] = ishi+j;
656 }
657 } else {
658 for (j=0; j<n; j++) {
659 npt = 6*iplo+5*j;
660 buff.fPols[npt] = c+1;
661 buff.fPols[npt+1] = 3;
662 buff.fPols[npt+2] = isout+j;
663 buff.fPols[npt+3] = islo+((j+1)%n);
664 buff.fPols[npt+4] = islo+j;
665 }
666 for (j=0; j<n; j++) {
667 npt = 6*iplo+5*(n+j);
668 buff.fPols[npt] = c+2;
669 buff.fPols[npt+1] = 3;
670 buff.fPols[npt+2] = isout+n*(n-1)+j;
671 buff.fPols[npt+3] = ishi+j;
672 buff.fPols[npt+4] = ishi+((j+1)%n);
673 }
674 }
675}
676
677////////////////////////////////////////////////////////////////////////////////
678/// Compute r^2 = x^2 + y^2 at a given z coordinate, for either inner or outer hyperbolas.
679
681{
682 Double_t r0, tsq;
683 if (inner) {
684 r0 = fRmin;
685 tsq = fTinsq;
686 } else {
687 r0 = fRmax;
688 tsq = fToutsq;
689 }
690 return (r0*r0+tsq*z*z);
691}
692
693////////////////////////////////////////////////////////////////////////////////
694/// Compute z^2 at a given r^2, for either inner or outer hyperbolas.
695
697{
698 Double_t r0, tsq;
699 if (inner) {
700 r0 = fRmin;
701 tsq = fTinsq;
702 } else {
703 r0 = fRmax;
704 tsq = fToutsq;
705 }
706 if (TMath::Abs(tsq) < TGeoShape::Tolerance()) return TGeoShape::Big();
707 return ((r*r-r0*r0)/tsq);
708}
709
710////////////////////////////////////////////////////////////////////////////////
711/// computes the closest distance from given point to this shape, according
712/// to option. The matching point on the shape is stored in spoint.
713
715{
716 Double_t safe, safrmin, safrmax;
717 if (in) {
718 safe = fDz-TMath::Abs(point[2]);
719 safrmin = SafetyToHype(point, kTRUE, in);
720 if (safrmin < safe) safe = safrmin;
721 safrmax = SafetyToHype(point, kFALSE,in);
722 if (safrmax < safe) safe = safrmax;
723 } else {
724 safe = -fDz+TMath::Abs(point[2]);
725 safrmin = SafetyToHype(point, kTRUE, in);
726 if (safrmin > safe) safe = safrmin;
727 safrmax = SafetyToHype(point, kFALSE,in);
728 if (safrmax > safe) safe = safrmax;
729 }
730 return safe;
731}
732
733////////////////////////////////////////////////////////////////////////////////
734/// Compute an underestimate of the closest distance from a point to inner or
735/// outer infinite hyperbolas.
736
738{
739 Double_t r, rsq, rhsq, rh, dr, tsq, saf;
740 if (inner && !HasInner()) return (in)?TGeoShape::Big():-TGeoShape::Big();
741 rsq = point[0]*point[0]+point[1]*point[1];
742 r = TMath::Sqrt(rsq);
743 rhsq = RadiusHypeSq(point[2], inner);
744 rh = TMath::Sqrt(rhsq);
745 dr = r - rh;
746 if (inner) {
747 if (!in && dr>0) return -TGeoShape::Big();
748 if (TMath::Abs(fStIn) < TGeoShape::Tolerance()) return TMath::Abs(dr);
750 tsq = fTinsq;
751 } else {
752 if (!in && dr<0) return -TGeoShape::Big();
754 tsq = fToutsq;
755 }
756 if (TMath::Abs(dr)<TGeoShape::Tolerance()) return 0.;
757 // 1. dr<0 => approximate safety with distance to tangent to hyperbola in z = |point[2]|
758 Double_t m;
759 if (dr<0) {
760 m = rh/(tsq*TMath::Abs(point[2]));
761 saf = -m*dr/TMath::Sqrt(1.+m*m);
762 return saf;
763 }
764 // 2. dr>0 => approximate safety with distance from point to segment P1(r(z0),z0) and P2(r0, z(r0))
765 m = (TMath::Sqrt(ZHypeSq(r,inner)) - TMath::Abs(point[2]))/dr;
766 saf = m*dr/TMath::Sqrt(1.+m*m);
767 return saf;
768}
769
770////////////////////////////////////////////////////////////////////////////////
771/// Save a primitive as a C++ statement(s) on output stream "out".
772
773void TGeoHype::SavePrimitive(std::ostream &out, Option_t * /*option*/ /*= ""*/)
774{
776 out << " // Shape: " << GetName() << " type: " << ClassName() << std::endl;
777 out << " rin = " << fRmin << ";" << std::endl;
778 out << " stin = " << fStIn << ";" << std::endl;
779 out << " rout = " << fRmax << ";" << std::endl;
780 out << " stout = " << fStOut << ";" << std::endl;
781 out << " dz = " << fDz << ";" << std::endl;
782 out << " TGeoShape *" << GetPointerName() << " = new TGeoHype(\"" << GetName() << "\",rin,stin,rout,stout,dz);" << std::endl;
784}
785
786////////////////////////////////////////////////////////////////////////////////
787/// Set dimensions of the hyperboloid.
788
790{
791 fRmin = rin;
792 fRmax = rout;
793 fDz = dz;
794 fStIn = stin;
795 fStOut = stout;
797 fTinsq = fTin*fTin;
800 if ((fRmin==0) && (fStIn==0)) SetShapeBit(kGeoRSeg, kTRUE);
802}
803
804////////////////////////////////////////////////////////////////////////////////
805/// Set dimensions of the hyperboloid starting from an array.
806/// - param[0] = dz
807/// - param[1] = rin
808/// - param[2] = stin
809/// - param[3] = rout
810/// - param[4] = stout
811
813{
814 Double_t dz = param[0];
815 Double_t rin = param[1];
816 Double_t stin = param[2];
817 Double_t rout = param[3];
818 Double_t stout = param[4];
819 SetHypeDimensions(rin, stin, rout, stout, dz);
820}
821
822////////////////////////////////////////////////////////////////////////////////
823/// create tube mesh points
824
826{
827 Double_t z,dz,r;
828 Int_t i,j, n;
829 if (!points) return;
831 Double_t dphi = 360./n;
832 Double_t phi = 0;
833 dz = 2.*fDz/(n-1);
834
835 Int_t indx = 0;
836
837 if (HasInner()) {
838 // Inner surface points
839 for (i=0; i<n; i++) {
840 z = -fDz+i*dz;
842 for (j=0; j<n; j++) {
843 phi = j*dphi*TMath::DegToRad();
844 points[indx++] = r * TMath::Cos(phi);
845 points[indx++] = r * TMath::Sin(phi);
846 points[indx++] = z;
847 }
848 }
849 } else {
850 points[indx++] = 0.;
851 points[indx++] = 0.;
852 points[indx++] = -fDz;
853 points[indx++] = 0.;
854 points[indx++] = 0.;
855 points[indx++] = fDz;
856 }
857 // Outer surface points
858 for (i=0; i<n; i++) {
859 z = -fDz + i*dz;
861 for (j=0; j<n; j++) {
862 phi = j*dphi*TMath::DegToRad();
863 points[indx++] = r * TMath::Cos(phi);
864 points[indx++] = r * TMath::Sin(phi);
865 points[indx++] = z;
866 }
867 }
868}
869
870////////////////////////////////////////////////////////////////////////////////
871/// create tube mesh points
872
874{
875 Double_t z,dz,r;
876 Int_t i,j, n;
877 if (!points) return;
879 Double_t dphi = 360./n;
880 Double_t phi = 0;
881 dz = 2.*fDz/(n-1);
882
883 Int_t indx = 0;
884
885 if (HasInner()) {
886 // Inner surface points
887 for (i=0; i<n; i++) {
888 z = -fDz+i*dz;
890 for (j=0; j<n; j++) {
891 phi = j*dphi*TMath::DegToRad();
892 points[indx++] = r * TMath::Cos(phi);
893 points[indx++] = r * TMath::Sin(phi);
894 points[indx++] = z;
895 }
896 }
897 } else {
898 points[indx++] = 0.;
899 points[indx++] = 0.;
900 points[indx++] = -fDz;
901 points[indx++] = 0.;
902 points[indx++] = 0.;
903 points[indx++] = fDz;
904 }
905 // Outer surface points
906 for (i=0; i<n; i++) {
907 z = -fDz + i*dz;
909 for (j=0; j<n; j++) {
910 phi = j*dphi*TMath::DegToRad();
911 points[indx++] = r * TMath::Cos(phi);
912 points[indx++] = r * TMath::Sin(phi);
913 points[indx++] = z;
914 }
915 }
916}
917
918////////////////////////////////////////////////////////////////////////////////
919/// Returns numbers of vertices, segments and polygons composing the shape mesh.
920
921void TGeoHype::GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const
922{
924 Bool_t hasRmin = HasInner();
925 nvert = (hasRmin)?(2*n*n):(n*n+2);
926 nsegs = (hasRmin)?(4*n*n):(n*(2*n+1));
927 npols = (hasRmin)?(2*n*n):(n*(n+1));
928}
929
930////////////////////////////////////////////////////////////////////////////////
931/// Return number of vertices of the mesh representation
932
934{
936 Int_t numPoints = (HasRmin())?(2*n*n):(n*n+2);
937 return numPoints;
938}
939
940////////////////////////////////////////////////////////////////////////////////
941/// fill size of this 3-D object
942
944{
945}
946
947////////////////////////////////////////////////////////////////////////////////
948/// Fills a static 3D buffer and returns a reference.
949
950const TBuffer3D & TGeoHype::GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
951{
952 static TBuffer3D buffer(TBuffer3DTypes::kGeneric);
953
954 TGeoBBox::FillBuffer3D(buffer, reqSections, localFrame);
955
956 if (reqSections & TBuffer3D::kRawSizes) {
958 Bool_t hasRmin = HasInner();
959 Int_t nbPnts = (hasRmin)?(2*n*n):(n*n+2);
960 Int_t nbSegs = (hasRmin)?(4*n*n):(n*(2*n+1));
961 Int_t nbPols = (hasRmin)?(2*n*n):(n*(n+1));
962 if (buffer.SetRawSizes(nbPnts, 3*nbPnts, nbSegs, 3*nbSegs, nbPols, 6*nbPols)) {
964 }
965 }
966 if ((reqSections & TBuffer3D::kRaw) && buffer.SectionsValid(TBuffer3D::kRawSizes)) {
967 SetPoints(buffer.fPnts);
968 if (!buffer.fLocalFrame) {
969 TransformPoints(buffer.fPnts, buffer.NbPnts());
970 }
971
972 SetSegsAndPols(buffer);
974 }
975
976 return buffer;
977}
978
979////////////////////////////////////////////////////////////////////////////////
980/// Check the inside status for each of the points in the array.
981/// Input: Array of point coordinates + vector size
982/// Output: Array of Booleans for the inside of each point
983
984void TGeoHype::Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
985{
986 for (Int_t i=0; i<vecsize; i++) inside[i] = Contains(&points[3*i]);
987}
988
989////////////////////////////////////////////////////////////////////////////////
990/// Compute the normal for an array o points so that norm.dot.dir is positive
991/// Input: Arrays of point coordinates and directions + vector size
992/// Output: Array of normal directions
993
994void TGeoHype::ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
995{
996 for (Int_t i=0; i<vecsize; i++) ComputeNormal(&points[3*i], &dirs[3*i], &norms[3*i]);
997}
998
999////////////////////////////////////////////////////////////////////////////////
1000/// Compute distance from array of input points having directions specified by dirs. Store output in dists
1001
1002void TGeoHype::DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t* step) const
1003{
1004 for (Int_t i=0; i<vecsize; i++) dists[i] = DistFromInside(&points[3*i], &dirs[3*i], 3, step[i]);
1005}
1006
1007////////////////////////////////////////////////////////////////////////////////
1008/// Compute distance from array of input points having directions specified by dirs. Store output in dists
1009
1010void TGeoHype::DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t* step) const
1011{
1012 for (Int_t i=0; i<vecsize; i++) dists[i] = DistFromOutside(&points[3*i], &dirs[3*i], 3, step[i]);
1013}
1014
1015////////////////////////////////////////////////////////////////////////////////
1016/// Compute safe distance from each of the points in the input array.
1017/// Input: Array of point coordinates, array of statuses for these points, size of the arrays
1018/// Output: Safety values
1019
1020void TGeoHype::Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
1021{
1022 for (Int_t i=0; i<vecsize; i++) safe[i] = Safety(&points[3*i], inside[i]);
1023}
ROOT::R::TRInterface & r
Definition: Object.C:4
#define b(i)
Definition: RSha256.hxx:100
#define c(i)
Definition: RSha256.hxx:101
int Int_t
Definition: RtypesCore.h:41
const Bool_t kFALSE
Definition: RtypesCore.h:88
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
float Float_t
Definition: RtypesCore.h:53
const Bool_t kTRUE
Definition: RtypesCore.h:87
const char Option_t
Definition: RtypesCore.h:62
#define ClassImp(name)
Definition: Rtypes.h:365
char name[80]
Definition: TGX11.cxx:109
R__EXTERN TGeoManager * gGeoManager
Definition: TGeoManager.h:601
double sin(double)
#define isin(address, start, length)
point * points
Definition: X3DBuffer.c:22
Generic 3D primitive description class.
Definition: TBuffer3D.h:18
Int_t * fPols
Definition: TBuffer3D.h:114
UInt_t NbPnts() const
Definition: TBuffer3D.h:80
Bool_t SectionsValid(UInt_t mask) const
Definition: TBuffer3D.h:67
@ kRawSizes
Definition: TBuffer3D.h:53
void SetSectionsValid(UInt_t mask)
Definition: TBuffer3D.h:65
Int_t * fSegs
Definition: TBuffer3D.h:113
Bool_t fLocalFrame
Definition: TBuffer3D.h:90
Bool_t SetRawSizes(UInt_t reqPnts, UInt_t reqPntsCapacity, UInt_t reqSegs, UInt_t reqSegsCapacity, UInt_t reqPols, UInt_t reqPolsCapacity)
Set kRaw tessellation section of buffer with supplied sizes.
Definition: TBuffer3D.cxx:359
Double_t * fPnts
Definition: TBuffer3D.h:112
Double_t fDX
Definition: TGeoBBox.h:21
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from outside point to surface of the box.
Definition: TGeoBBox.cxx:430
virtual void InspectShape() const
Prints shape parameters.
Definition: TGeoBBox.cxx:793
Double_t fOrigin[3]
Definition: TGeoBBox.h:24
Double_t fDY
Definition: TGeoBBox.h:22
Double_t fDZ
Definition: TGeoBBox.h:23
virtual void FillBuffer3D(TBuffer3D &buffer, Int_t reqSections, Bool_t localFrame) const
Fills the supplied buffer, with sections in desired frame See TBuffer3D.h for explanation of sections...
Definition: TGeoBBox.cxx:1033
Hyperboloid class defined by 5 parameters.
Definition: TGeoHype.h:18
virtual TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step)
Cannot divide hyperboloids.
Definition: TGeoHype.cxx:370
virtual void SetPoints(Double_t *points) const
create tube mesh points
Definition: TGeoHype.cxx:825
Double_t SafetyToHype(const Double_t *point, Bool_t inner, Bool_t in) const
Compute an underestimate of the closest distance from a point to inner or outer infinite hyperbolas.
Definition: TGeoHype.cxx:737
Double_t ZHypeSq(Double_t r, Bool_t inner) const
Compute z^2 at a given r^2, for either inner or outer hyperbolas.
Definition: TGeoHype.cxx:696
virtual TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
in case shape has some negative parameters, these has to be computed in order to fit the mother
Definition: TGeoHype.cxx:423
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
Compute safe distance from each of the points in the input array.
Definition: TGeoHype.cxx:1020
virtual const TBuffer3D & GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
Fills a static 3D buffer and returns a reference.
Definition: TGeoHype.cxx:950
Double_t RadiusHypeSq(Double_t z, Bool_t inner) const
Compute r^2 = x^2 + y^2 at a given z coordinate, for either inner or outer hyperbolas.
Definition: TGeoHype.cxx:680
virtual void GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const
Returns numbers of vertices, segments and polygons composing the shape mesh.
Definition: TGeoHype.cxx:921
virtual Double_t Capacity() const
Computes capacity of the shape in [length^3].
Definition: TGeoHype.cxx:128
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
Definition: TGeoHype.cxx:1002
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
Definition: TGeoHype.cxx:409
Int_t DistToHype(const Double_t *point, const Double_t *dir, Double_t *s, Bool_t inner, Bool_t in) const
Compute distance from an arbitrary point to inner/outer surface of hyperboloid.
Definition: TGeoHype.cxx:319
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
compute closest distance from point px,py to each corner
Definition: TGeoHype.cxx:210
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const
computes the closest distance from given point to this shape, according to option.
Definition: TGeoHype.cxx:714
virtual TBuffer3D * MakeBuffer3D() const
Creates a TBuffer3D describing this shape.
Definition: TGeoHype.cxx:461
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
Check the inside status for each of the points in the array.
Definition: TGeoHype.cxx:984
virtual void SetDimensions(Double_t *param)
Set dimensions of the hyperboloid starting from an array.
Definition: TGeoHype.cxx:812
TGeoHype()
Default constructor.
Definition: TGeoHype.cxx:63
Double_t fStIn
Definition: TGeoHype.h:24
Double_t fToutsq
Definition: TGeoHype.h:32
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
Definition: TGeoHype.cxx:994
virtual void InspectShape() const
print shape parameters
Definition: TGeoHype.cxx:444
virtual ~TGeoHype()
destructor
Definition: TGeoHype.cxx:121
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
Definition: TGeoHype.cxx:773
virtual Int_t GetNmeshVertices() const
Return number of vertices of the mesh representation.
Definition: TGeoHype.cxx:933
virtual Bool_t Contains(const Double_t *point) const
test if point is inside this tube
Definition: TGeoHype.cxx:195
void SetHypeDimensions(Double_t rin, Double_t stin, Double_t rout, Double_t stout, Double_t dz)
Set dimensions of the hyperboloid.
Definition: TGeoHype.cxx:789
Double_t fStOut
Definition: TGeoHype.h:25
virtual void ComputeBBox()
Compute bounding box of the hyperboloid.
Definition: TGeoHype.cxx:138
Double_t fTinsq
Definition: TGeoHype.h:31
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
Compute normal to closest surface from POINT.
Definition: TGeoHype.cxx:158
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
Definition: TGeoHype.cxx:1010
virtual Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
Get range of shape for a given axis.
Definition: TGeoHype.cxx:380
Double_t fTout
Definition: TGeoHype.h:30
virtual void Sizeof3D() const
fill size of this 3-D object
Definition: TGeoHype.cxx:943
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from inside point to surface of the hyperboloid.
Definition: TGeoHype.cxx:219
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
compute distance from outside point to surface of the hyperboloid.
Definition: TGeoHype.cxx:259
Double_t fTin
Definition: TGeoHype.h:29
virtual void SetSegsAndPols(TBuffer3D &buff) const
Fill TBuffer3D structure for segments and polygons.
Definition: TGeoHype.cxx:483
Bool_t HasInner() const
Definition: TGeoHype.h:70
Int_t GetNsegments() const
Get number of segments approximating circles.
Geometrical transformation package.
Definition: TGeoMatrix.h:41
Base abstract class for all shapes.
Definition: TGeoShape.h:26
static Double_t Big()
Definition: TGeoShape.h:88
virtual Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const =0
Int_t GetBasicColor() const
Get the basic color (0-7).
Definition: TGeoShape.cxx:673
void TransformPoints(Double_t *points, UInt_t NbPoints) const
Tranform a set of points (LocalToMaster)
Definition: TGeoShape.cxx:552
void SetShapeBit(UInt_t f, Bool_t set)
Equivalent of TObject::SetBit.
Definition: TGeoShape.cxx:524
const char * GetPointerName() const
Provide a pointer name containing uid.
Definition: TGeoShape.cxx:699
Int_t ShapeDistancetoPrimitive(Int_t numpoints, Int_t px, Int_t py) const
Returns distance to shape primitive mesh.
Definition: TGeoShape.cxx:259
virtual const char * GetName() const
Get the shape name.
Definition: TGeoShape.cxx:248
@ kGeoSavePrimitive
Definition: TGeoShape.h:65
@ kGeoRSeg
Definition: TGeoShape.h:35
@ kGeoInvalidShape
Definition: TGeoShape.h:42
@ kGeoHype
Definition: TGeoShape.h:64
@ kGeoRunTimeShape
Definition: TGeoShape.h:41
static Double_t Tolerance()
Definition: TGeoShape.h:91
Bool_t TestShapeBit(UInt_t f) const
Definition: TGeoShape.h:163
Cylindrical tube class.
Definition: TGeoTube.h:18
Double_t fRmin
Definition: TGeoTube.h:21
Double_t fDz
Definition: TGeoTube.h:23
Double_t fRmax
Definition: TGeoTube.h:22
Bool_t HasRmin() const
Definition: TGeoTube.h:69
TGeoVolume, TGeoVolumeMulti, TGeoVolumeAssembly are the volume classes.
Definition: TGeoVolume.h:53
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition: TObject.h:172
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition: TObject.cxx:128
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition: TObject.cxx:866
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition: TObject.cxx:694
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:880
const Int_t n
Definition: legend1.C:16
static constexpr double sr
static constexpr double s
Long64_t LocMin(Long64_t n, const T *a)
Return index of array with the minimum element.
Definition: TMath.h:960
T1 Sign(T1 a, T2 b)
Definition: TMathBase.h:165
Double_t ATan2(Double_t, Double_t)
Definition: TMath.h:667
constexpr Double_t DegToRad()
Conversion from degree to radian:
Definition: TMath.h:82
Double_t Sqrt(Double_t x)
Definition: TMath.h:679
Short_t Min(Short_t a, Short_t b)
Definition: TMathBase.h:180
Double_t Cos(Double_t)
Definition: TMath.h:629
constexpr Double_t Pi()
Definition: TMath.h:38
Double_t Sin(Double_t)
Definition: TMath.h:625
Double_t Tan(Double_t)
Definition: TMath.h:633
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
auto * m
Definition: textangle.C:8
auto * a
Definition: textangle.C:12
#define snext(osub1, osub2)
Definition: triangle.c:1167