Logo ROOT   6.18/05
Reference Guide
TBackCompFitter.cxx
Go to the documentation of this file.
1// @(#)root/hist:$Id$
2// Author: Lorenzo Moneta
3
4/*************************************************************************
5 * Copyright (C) 1995-2012, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12////////////////////////////////////////////////////////////////////////////////
13/** \class TBackCompFitter
14 \ingroup Hist
15 \brief Backward compatible implementation of TVirtualFitter
16
17Backward compatible implementation of TVirtualFitter using the
18class ROOT::Fit::Fitter. This class is created after fitting an
19histogram (TH1), TGraph or TTree and provides in addition to the
20methods of the TVirtualFitter hooks to access the fit result class
21(ROOT::Fit::FitResult), the fit configuration
22(ROOT::Fit::FitConfig) or the fit data (ROOT::Fit::FitData) using
23
24~~~~~~~~{.cpp}
25 TBackCompFitter * fitter = (TBackCompFitter *) TVirtualFitter::GetFitter();
26 ROOT::Fit::FitResult & result = fitter->GetFitResult();
27 result.Print(std::cout);
28~~~~~~~~
29
30Methods for getting the confidence level or contours are also
31provided. Note that after a new calls to TH1::Fit (or similar) the
32class will be deleted and all reference to the FitResult, FitConfig
33or minimizer will be invalid. One could eventually copying the
34class before issuing a new fit to avoid deleting this information.
35*///////////////////////////////////////////////////////////////////////////////
36
37#include "TROOT.h"
38#include "TBackCompFitter.h"
39
40
41#include "TMethodCall.h"
42
43#include "Math/Util.h"
44
45#include <iostream>
46#include <cassert>
47
48//needed by GetCondifenceLevel
49#include "Math/IParamFunction.h"
50#include "TH1.h"
51#include "TH2.h"
52#include "TH3.h"
53#include "TMath.h"
54#include "TGraph.h"
55#include "TGraphErrors.h"
56#include "TGraph2DErrors.h"
57#include "TMultiGraph.h"
58#include "HFitInterface.h"
59#include "Math/Minimizer.h"
60#include "Fit/BinData.h"
61#include "Fit/FitConfig.h"
62#include "Fit/UnBinData.h"
65#include "Fit/Chi2FCN.h"
66#include "Fit/FcnAdapter.h"
67#include "TFitResult.h"
68
69//#define DEBUG 1
70
71
73
74
75
76////////////////////////////////////////////////////////////////////////////////
77/// Constructor needed by TVirtualFitter interface. Same behavior as default constructor.
78/// initialize setting name and the global pointer
79
81 fMinimizer(0),
82 fObjFunc(0),
83 fModelFunc(0)
84{
85 SetName("BCFitter");
86}
87
88////////////////////////////////////////////////////////////////////////////////
89/// Constructor used after having fit using directly ROOT::Fit::Fitter
90/// will create a dummy fitter copying configuration and parameter settings
91
92TBackCompFitter::TBackCompFitter(const std::shared_ptr<ROOT::Fit::Fitter> & fitter, const std::shared_ptr<ROOT::Fit::FitData> & data) :
93 fFitData(data),
94 fFitter(fitter),
95 fMinimizer(0),
96 fObjFunc(0),
97 fModelFunc(0)
98{
99 SetName("LastFitter");
100}
101
102////////////////////////////////////////////////////////////////////////////////
103/// Destructor - delete the managed objects
104
106 if (fMinimizer) delete fMinimizer;
107 if (fObjFunc) delete fObjFunc;
108 if (fModelFunc) delete fModelFunc;
109}
110
111////////////////////////////////////////////////////////////////////////////////
112/// Do chisquare calculations in case of likelihood fits
113/// Do evaluation a the minimum only
114
116 const std::vector<double> & minpar = fFitter->Result().Parameters();
117 assert (npar == (int) minpar.size() );
118 double diff = 0;
119 double s = 0;
120 for (int i =0; i < npar; ++i) {
121 diff += std::abs( params[i] - minpar[i] );
122 s += minpar[i];
123 }
124
125 if (diff > s * 1.E-12 ) Warning("Chisquare","given parameter values are not at minimum - chi2 at minimum is returned");
126 return fFitter->Result().Chi2();
127}
128
129////////////////////////////////////////////////////////////////////////////////
130/// Clear resources for consecutive fits
131
133 // need to do something here ??? to be seen
134}
135
136////////////////////////////////////////////////////////////////////////////////
137/// Execute the command (Fortran Minuit compatible interface)
138
139Int_t TBackCompFitter::ExecuteCommand(const char *command, Double_t *args, Int_t nargs) {
140#ifdef DEBUG
141 std::cout<<"Execute command= "<<command<<std::endl;
142#endif
143
144 // set also number of parameters in obj function
146
147 TString scommand(command);
148 scommand.ToUpper();
149
150 // MIGRAD
151 if (scommand.Contains("MIG")) {
152 if (!fObjFunc) {
153 Error("ExecuteCommand","FCN must set before executing this command");
154 return -1;
155 }
156
157 fFitter->Config().SetMinimizer(GetDefaultFitter(), "Migrad");
158 bool ret = fFitter->FitFCN(*fObjFunc);
159 return (ret) ? 0 : -1;
160 }
161
162 //Minimize
163 if (scommand.Contains("MINI")) {
164
165 fFitter->Config().SetMinimizer(GetDefaultFitter(), "Minimize");
166 if (!fObjFunc) {
167 Error("ExecuteCommand","FCN must set before executing this command");
168 return -1;
169 }
170 bool ret = fFitter->FitFCN(*fObjFunc);
171 return (ret) ? 0 : -1;
172 }
173 //Simplex
174 if (scommand.Contains("SIM")) {
175
176 if (!fObjFunc) {
177 Error("ExecuteCommand","FCN must set before executing this command");
178 return -1;
179 }
180
181 fFitter->Config().SetMinimizer(GetDefaultFitter(), "Simplex");
182 bool ret = fFitter->FitFCN(*fObjFunc);
183 return (ret) ? 0 : -1;
184 }
185 //SCan
186 if (scommand.Contains("SCA")) {
187
188 if (!fObjFunc) {
189 Error("ExecuteCommand","FCN must set before executing this command");
190 return -1;
191 }
192
193 fFitter->Config().SetMinimizer(GetDefaultFitter(), "Scan");
194 bool ret = fFitter->FitFCN(*fObjFunc);
195 return (ret) ? 0 : -1;
196 }
197 // MINOS
198 else if (scommand.Contains("MINO")) {
199
200 if (fFitter->Config().MinosErrors() ) return 0;
201
202 if (!fObjFunc) {
203 Error("ExecuteCommand","FCN must set before executing this command");
204 return -1;
205 }
206 // do only MINOS. need access to minimizer. For the moment re-run fitting with minos options
207 fFitter->Config().SetMinosErrors(true);
208 // set new parameter values
209
210 fFitter->Config().SetMinimizer(GetDefaultFitter(), "Migrad"); // redo -minimization with Minos
211 bool ret = fFitter->FitFCN(*fObjFunc);
212 return (ret) ? 0 : -1;
213
214 }
215 //HESSE
216 else if (scommand.Contains("HES")) {
217
218 if (fFitter->Config().ParabErrors() ) return 0;
219
220 if (!fObjFunc) {
221 Error("ExecuteCommand","FCN must set before executing this command");
222 return -1;
223 }
224
225 // do only HESSE. need access to minimizer. For the moment re-run fitting with hesse options
226 fFitter->Config().SetParabErrors(true);
227 fFitter->Config().SetMinimizer(GetDefaultFitter(), "Migrad"); // redo -minimization with Minos
228 bool ret = fFitter->FitFCN(*fObjFunc);
229 return (ret) ? 0 : -1;
230 }
231
232 // FIX
233 else if (scommand.Contains("FIX")) {
234 for(int i = 0; i < nargs; i++) {
235 FixParameter(int(args[i])-1);
236 }
237 return 0;
238 }
239 // SET LIMIT (upper and lower)
240 else if (scommand.Contains("SET LIM")) {
241 if (nargs < 3) {
242 Error("ExecuteCommand","Invalid parameters given in SET LIMIT");
243 return -1;
244 }
245 int ipar = int(args[0]);
246 if (!ValidParameterIndex(ipar) ) return -1;
247 double low = args[1];
248 double up = args[2];
249 fFitter->Config().ParSettings(ipar).SetLimits(low,up);
250 return 0;
251 }
252 // SET PRINT
253 else if (scommand.Contains("SET PRIN")) {
254 if (nargs < 1) return -1;
255 fFitter->Config().MinimizerOptions().SetPrintLevel(int(args[0]) );
256 return 0;
257 }
258 // SET ERR
259 else if (scommand.Contains("SET ERR")) {
260 if (nargs < 1) return -1;
261 fFitter->Config().MinimizerOptions().SetPrintLevel(int( args[0]) );
262 return 0;
263 }
264 // SET STRATEGY
265 else if (scommand.Contains("SET STR")) {
266 if (nargs < 1) return -1;
267 fFitter->Config().MinimizerOptions().SetStrategy(int(args[0]) );
268 return 0;
269 }
270 //SET GRAD (not impl.)
271 else if (scommand.Contains("SET GRA")) {
272 // not yet available
273 // fGradient = true;
274 return -1;
275 }
276 //SET NOW (not impl.)
277 else if (scommand.Contains("SET NOW")) {
278 // no warning (works only for TMinuit)
279 // fGradient = true;
280 return -1;
281 }
282 // CALL FCN
283 else if (scommand.Contains("CALL FCN")) {
284 // call fcn function (global pointer to free function)
285
286 if (nargs < 1 || fFCN == 0 ) return -1;
287 int npar = fObjFunc->NDim();
288 // use values in fit result if existing otherwise in ParameterSettings
289 std::vector<double> params(npar);
290 for (int i = 0; i < npar; ++i)
291 params[i] = GetParameter(i);
292
293 double fval = 0;
294 (*fFCN)(npar, 0, fval, &params[0],int(args[0]) ) ;
295 return 0;
296 }
297 else {
298 // other commands passed
299 Error("ExecuteCommand","Invalid or not supported command given %s",command);
300 return -1;
301 }
302}
303
304////////////////////////////////////////////////////////////////////////////////
305/// Check if ipar is a valid parameter index
306
308 int nps = fFitter->Config().ParamsSettings().size();
309 if (ipar < 0 || ipar >= nps ) {
310 std::string msg = ROOT::Math::Util::ToString(ipar) + " is an invalid Parameter index";
311 Error("ValidParameterIndex","%s",msg.c_str());
312 return false;
313 }
314 return true;
315}
316
317////////////////////////////////////////////////////////////////////////////////
318/// Fix the parameter
319
321 if (ValidParameterIndex(ipar) )
322 fFitter->Config().ParSettings(ipar).Fix();
323}
324
325////////////////////////////////////////////////////////////////////////////////
326/// Computes point-by-point confidence intervals for the fitted function.
327/// \param n number of points
328/// \param ndim dimensions of points
329/// \param x points, at which to compute the intervals, for ndim > 1
330/// should be in order: (x0,y0, x1, y1, ... xn, yn)
331/// \param ci computed intervals are returned in this array
332/// \param cl confidence level, default=0.95
333///
334/// NOTE, that the intervals are approximate for nonlinear(in parameters) models
335
337{
338 if (!fFitter->Result().IsValid()) {
339 Error("GetConfidenceIntervals","Cannot compute confidence intervals with an invalide fit result");
340 return;
341 }
342
343 fFitter->Result().GetConfidenceIntervals(n,ndim,1,x,ci,cl,false);
344}
345
346////////////////////////////////////////////////////////////////////////////////
347/// Computes confidence intervals at level cl. Default is 0.95
348/// The TObject parameter can be a TGraphErrors, a TGraph2DErrors or a TH1,2,3.
349/// For Graphs, confidence intervals are computed for each point,
350/// the value of the graph at that point is set to the function value at that
351/// point, and the graph y-errors (or z-errors) are set to the value of
352/// the confidence interval at that point.
353/// For Histograms, confidence intervals are computed for each bin center
354/// The bin content of this bin is then set to the function value at the bin
355/// center, and the bin error is set to the confidence interval value.
356//
357/// NOTE: confidence intervals are approximate for nonlinear models!
358///
359/// Allowed combinations:
360///
361/// Fitted object | Passed object
362/// --------------------------|------------------
363/// TGraph | TGraphErrors, TH1
364/// TGraphErrors, AsymmErrors | TGraphErrors, TH1
365/// TH1 | TGraphErrors, TH1
366/// TGraph2D | TGraph2DErrors, TH2
367/// TGraph2DErrors | TGraph2DErrors, TH2
368/// TH2 | TGraph2DErrors, TH2
369/// TH3 | TH3
370
372{
373 if (!fFitter->Result().IsValid() ) {
374 Error("GetConfidenceIntervals","Cannot compute confidence intervals with an invalide fit result");
375 return;
376 }
377
378 // get data dimension from fit object
379 int datadim = 1;
380 TObject * fitobj = GetObjectFit();
381 if (!fitobj) {
382 Error("GetConfidenceIntervals","Cannot compute confidence intervals without a fitting object");
383 return;
384 }
385
386 if (fitobj->InheritsFrom(TGraph2D::Class())) datadim = 2;
387 if (fitobj->InheritsFrom(TH1::Class())) {
388 TH1 * h1 = dynamic_cast<TH1*>(fitobj);
389 assert(h1 != 0);
390 datadim = h1->GetDimension();
391 }
392
393 if (datadim == 1) {
394 if (!obj->InheritsFrom(TGraphErrors::Class()) && !obj->InheritsFrom(TH1::Class() ) ) {
395 Error("GetConfidenceIntervals", "Invalid object passed for storing confidence level data, must be a TGraphErrors or a TH1");
396 return;
397 }
398 }
399 if (datadim == 2) {
400 if (!obj->InheritsFrom(TGraph2DErrors::Class()) && !obj->InheritsFrom(TH2::Class() ) ) {
401 Error("GetConfidenceIntervals", "Invalid object passed for storing confidence level data, must be a TGraph2DErrors or a TH2");
402 return;
403 }
404 }
405 if (datadim == 3) {
406 if (!obj->InheritsFrom(TH3::Class() ) ) {
407 Error("GetConfidenceIntervals", "Invalid object passed for storing confidence level data, must be a TH3");
408 return;
409 }
410 }
411
412 // fill bin data (for the moment use all ranges) according to object passed
414 data.Opt().fUseEmpty = true; // need to use all bins of given histograms
415 // call appropriate function according to type of object
416 if (obj->InheritsFrom(TGraph::Class()) )
417 ROOT::Fit::FillData(data, dynamic_cast<TGraph *>(obj) );
418 else if (obj->InheritsFrom(TGraph2D::Class()) )
419 ROOT::Fit::FillData(data, dynamic_cast<TGraph2D *>(obj) );
420// else if (obj->InheritsFrom(TMultiGraph::Class()) )
421// ROOT::Fit::FillData(data, dynamic_cast<TMultiGraph *>(obj) );
422 else if (obj->InheritsFrom(TH1::Class()) )
423 ROOT::Fit::FillData(data, dynamic_cast<TH1 *>(obj) );
424
425
426 unsigned int n = data.Size();
427
428 std::vector<double> ci( n );
429
430 fFitter->Result().GetConfidenceIntervals(data,&ci[0],cl,false);
431
432 const ROOT::Math::IParamMultiFunction * func = fFitter->Result().FittedFunction();
433 assert(func != 0);
434
435 // fill now the object with cl data
436 for (unsigned int i = 0; i < n; ++i) {
437 const double * x = data.Coords(i);
438 double y = (*func)( x ); // function is evaluated using its parameters
439
440 if (obj->InheritsFrom(TGraphErrors::Class()) ) {
441 TGraphErrors * gr = dynamic_cast<TGraphErrors *> (obj);
442 assert(gr != 0);
443 gr->SetPoint(i, *x, y);
444 gr->SetPointError(i, 0, ci[i]);
445 }
446 if (obj->InheritsFrom(TGraph2DErrors::Class()) ) {
447 TGraph2DErrors * gr = dynamic_cast<TGraph2DErrors *> (obj);
448 assert(gr != 0);
449 gr->SetPoint(i, x[0], x[1], y);
450 gr->SetPointError(i, 0, 0, ci[i]);
451 }
452 if (obj->InheritsFrom(TH1::Class()) ) {
453 TH1 * h1 = dynamic_cast<TH1 *> (obj);
454 assert(h1 != 0);
455 int ibin = 0;
456 if (datadim == 1) ibin = h1->FindBin(*x);
457 if (datadim == 2) ibin = h1->FindBin(x[0],x[1]);
458 if (datadim == 3) ibin = h1->FindBin(x[0],x[1],x[2]);
459 h1->SetBinContent(ibin, y);
460 h1->SetBinError(ibin, ci[i]);
461 }
462 }
463
464}
465
466////////////////////////////////////////////////////////////////////////////////
467/// Get the error matrix in a pointer to a NxN array.
468/// excluding the fixed parameters
469
471 unsigned int nfreepar = GetNumberFreeParameters();
472 unsigned int ntotpar = GetNumberTotalParameters();
473
474 if (fCovar.size() != nfreepar*nfreepar )
475 fCovar.resize(nfreepar*nfreepar);
476
477 if (!fFitter->Result().IsValid() ) {
478 Warning("GetCovarianceMatrix","Invalid fit result");
479 return 0;
480 }
481
482 unsigned int l = 0;
483 for (unsigned int i = 0; i < ntotpar; ++i) {
484 if (fFitter->Config().ParSettings(i).IsFixed() ) continue;
485 unsigned int m = 0;
486 for (unsigned int j = 0; j < ntotpar; ++j) {
487 if (fFitter->Config().ParSettings(j).IsFixed() ) continue;
488 unsigned int index = nfreepar*l + m;
489 assert(index < fCovar.size() );
490 fCovar[index] = fFitter->Result().CovMatrix(i,j);
491 m++;
492 }
493 l++;
494 }
495 return &(fCovar.front());
496}
497
498////////////////////////////////////////////////////////////////////////////////
499/// Get error matrix element (return all zero if matrix is not available)
500
502 unsigned int np2 = fCovar.size();
503 unsigned int npar = GetNumberFreeParameters();
504 if ( np2 == 0 || np2 != npar *npar ) {
505 double * c = GetCovarianceMatrix();
506 if (c == 0) return 0;
507 }
508 return fCovar[i*npar + j];
509}
510
511////////////////////////////////////////////////////////////////////////////////
512/// Get fit errors
513
515 if (!ValidParameterIndex(ipar) ) return -1;
516
517 const ROOT::Fit::FitResult & result = fFitter->Result();
518 if (!result.IsValid() ) {
519 Warning("GetErrors","Invalid fit result");
520 return -1;
521 }
522
523 eparab = result.Error(ipar);
524 eplus = result.UpperError(ipar);
525 eminus = result.LowerError(ipar);
526 globcc = result.GlobalCC(ipar);
527 return 0;
528}
529
530////////////////////////////////////////////////////////////////////////////////
531/// Number of total parameters
532
534 return fFitter->Result().NTotalParameters();
535}
537 // number of variable parameters
538 return fFitter->Result().NFreeParameters();
539}
540
541////////////////////////////////////////////////////////////////////////////////
542/// Parameter error
543
545 if (fFitter->Result().IsEmpty() ) {
546 if (ValidParameterIndex(ipar) ) return fFitter->Config().ParSettings(ipar).StepSize();
547 else return 0;
548 }
549 return fFitter->Result().Error(ipar);
550}
551
552////////////////////////////////////////////////////////////////////////////////
553/// Parameter value
554
556 if (fFitter->Result().IsEmpty() ) {
557 if (ValidParameterIndex(ipar) ) return fFitter->Config().ParSettings(ipar).Value();
558 else return 0;
559 }
560 return fFitter->Result().Value(ipar);
561}
562
563////////////////////////////////////////////////////////////////////////////////
564/// Get all parameter info (name, value, errors)
565
566Int_t TBackCompFitter::GetParameter(Int_t ipar,char *name,Double_t &value,Double_t &verr,Double_t &vlow, Double_t &vhigh) const {
567 if (!ValidParameterIndex(ipar) ) {
568 return -1;
569 }
570 const std::string & pname = fFitter->Config().ParSettings(ipar).Name();
571 const char * c = pname.c_str();
572 std::copy(c,c + pname.size(),name);
573
574 if (fFitter->Result().IsEmpty() ) {
575 value = fFitter->Config().ParSettings(ipar).Value();
576 verr = fFitter->Config().ParSettings(ipar).Value(); // error is step size in this case
577 vlow = fFitter->Config().ParSettings(ipar).LowerLimit(); // vlow is lower limit in this case
578 vhigh = fFitter->Config().ParSettings(ipar).UpperLimit(); // vlow is lower limit in this case
579 return 1;
580 }
581 else {
582 value = fFitter->Result().Value(ipar);
583 verr = fFitter->Result().Error(ipar);
584 vlow = fFitter->Result().LowerError(ipar);
585 vhigh = fFitter->Result().UpperError(ipar);
586 }
587 return 0;
588}
589
590////////////////////////////////////////////////////////////////////////////////
591/// Return name of parameter ipar
592
593const char *TBackCompFitter::GetParName(Int_t ipar) const {
594 if (!ValidParameterIndex(ipar) ) {
595 return 0;
596 }
597 return fFitter->Config().ParSettings(ipar).Name().c_str();
598}
599
600////////////////////////////////////////////////////////////////////////////////
601/// Get fit statistical information
602
603Int_t TBackCompFitter::GetStats(Double_t &amin, Double_t &edm, Double_t &errdef, Int_t &nvpar, Int_t &nparx) const {
604 const ROOT::Fit::FitResult & result = fFitter->Result();
605 amin = result.MinFcnValue();
606 edm = result.Edm();
607 errdef = fFitter->Config().MinimizerOptions().ErrorDef();
608 nvpar = result.NFreeParameters();
609 nparx = result.NTotalParameters();
610 return 0;
611}
612
613////////////////////////////////////////////////////////////////////////////////
614/// Sum of log (un-needed)
615
617 Warning("GetSumLog","Dummy method - returned 0");
618 return 0.;
619}
620
621////////////////////////////////////////////////////////////////////////////////
622/// Query if parameter ipar is fixed
623
625 if (!ValidParameterIndex(ipar) ) {
626 return false;
627 }
628 return fFitter->Config().ParSettings(ipar).IsFixed();
629}
630
631////////////////////////////////////////////////////////////////////////////////
632/// Print the fit result.
633/// Use PrintResults function in case of Minuit for old -style printing
634
636 if (fFitter->GetMinimizer() && fFitter->Config().MinimizerType() == "Minuit")
637 fFitter->GetMinimizer()->PrintResults();
638 else {
639 if (level > 0) fFitter->Result().Print(std::cout);
640 if (level > 1) fFitter->Result().PrintCovMatrix(std::cout);
641 }
642 // need to print minos errors and globalCC + other info
643}
644
645////////////////////////////////////////////////////////////////////////////////
646/// Release a fit parameter
647
649 if (ValidParameterIndex(ipar) )
650 fFitter->Config().ParSettings(ipar).Release();
651}
652
653////////////////////////////////////////////////////////////////////////////////
654/// Set fit method (chi2 or likelihood).
655/// According to the method the appropriate FCN function will be created
656
658 Info("SetFitMethod","non supported method");
659}
660
661////////////////////////////////////////////////////////////////////////////////
662/// Set (add) a new fit parameter passing initial value, step size (verr) and parameter limits
663/// if vlow > vhigh the parameter is unbounded
664/// if the stepsize (verr) == 0 the parameter is treated as fixed
665
666Int_t TBackCompFitter::SetParameter(Int_t ipar,const char *parname,Double_t value,Double_t verr,Double_t vlow, Double_t vhigh) {
667 std::vector<ROOT::Fit::ParameterSettings> & parlist = fFitter->Config().ParamsSettings();
668 if ( ipar >= (int) parlist.size() ) parlist.resize(ipar+1);
669 ROOT::Fit::ParameterSettings ps(parname, value, verr);
670 if (verr == 0) ps.Fix();
671 if (vlow < vhigh) ps.SetLimits(vlow, vhigh);
672 parlist[ipar] = ps;
673 return 0;
674}
675
676//______________________________________________________________________________
677// static method evaluating FCN
678// void TBackCompFitter::FCN( int &, double * , double & f, double * x , int /* iflag */) {
679// // get static instance of fitter
680// TBackCompFitter * fitter = dynamic_cast<TBackCompFitter *>(TVirtualFitter::GetFitter());
681// assert(fitter);
682// if (fitter->fObjFunc == 0) fitter->RecreateFCN();
683// assert(fitter->fObjFunc);
684// f = (*(fitter.fObjFunc) )(x);
685// }
686
687////////////////////////////////////////////////////////////////////////////////
688/// Recreate a minimizer instance using the function and data
689/// set objective function in minimizers function to re-create FCN from stored data object and fit options
690
692 assert(fFitData.get());
693
694 // case of standard fits (not made fia Fitter::FitFCN)
695 if (fFitter->Result().FittedFunction() != 0) {
696
697 if (fModelFunc) delete fModelFunc;
698 fModelFunc = dynamic_cast<ROOT::Math::IParamMultiFunction *>((fFitter->Result().FittedFunction())->Clone());
699 assert(fModelFunc);
700
701 // create fcn functions, should consider also gradient case
702 const ROOT::Fit::BinData * bindata = dynamic_cast<const ROOT::Fit::BinData *>(fFitData.get());
703 if (bindata) {
704 if (GetFitOption().Like )
706 else
708 }
709 else {
710 const ROOT::Fit::UnBinData * unbindata = dynamic_cast<const ROOT::Fit::UnBinData *>(fFitData.get());
711 assert(unbindata);
713 }
714 }
715
716 // recreate the minimizer
717 fMinimizer = fFitter->Config().CreateMinimizer();
718 if (fMinimizer == 0) {
719 Error("SetMinimizerFunction","cannot create minimizer %s",fFitter->Config().MinimizerType().c_str() );
720 }
721 else {
722 if (!fObjFunc) {
723 Error("SetMinimizerFunction","Object Function pointer is NULL");
724 }
725 else
727 }
728
729}
730
731////////////////////////////////////////////////////////////////////////////////
732/// Override setFCN to use the Adapter to Minuit2 FCN interface
733/// To set the address of the minimization function
734
736{
737 fFCN = fcn;
738 if (fObjFunc) delete fObjFunc;
741}
742
743
744////////////////////////////////////////////////////////////////////////////////
745/// Set the objective function for fitting
746/// Needed if fitting directly using TBackCompFitter class
747/// The class clones a copy of the function and manages it
748
750 if (fObjFunc) delete fObjFunc;
751 fObjFunc = fcn->Clone();
752}
753
754////////////////////////////////////////////////////////////////////////////////
755/// Private method to set dimension in objective function
756
758 if (!fObjFunc) return;
760 assert(fobj != 0);
761 int ndim = fFitter->Config().ParamsSettings().size();
762 if (ndim != 0) fobj->SetDimension(ndim);
763}
764
765////////////////////////////////////////////////////////////////////////////////
766/// Return a pointer to the objective function (FCN)
767/// If fitting directly using TBackCompFitter the pointer is managed by the class,
768/// which has been set previously when calling SetObjFunction or SetFCN
769/// Otherwise if the class is used in the backward compatible mode (e.g. after having fitted a TH1)
770/// the return pointer will be valid after fitting and as long a new fit will not be done.
771
773 if (fObjFunc) return fObjFunc;
774 return fFitter->GetFCN();
775}
776
777////////////////////////////////////////////////////////////////////////////////
778/// Return a pointer to the minimizer.
779/// the return pointer will be valid after fitting and as long a new fit will not be done.
780/// For keeping a minimizer pointer the method ReCreateMinimizer() could eventually be used
781
783 if (fMinimizer) return fMinimizer;
784 return fFitter->GetMinimizer();
785}
786
787////////////////////////////////////////////////////////////////////////////////
788/// Return a new copy of the TFitResult object which needs to be deleted later by the user
789
791 if (!fFitter.get() ) return 0;
792 return new TFitResult( fFitter->Result() );
793}
794
795////////////////////////////////////////////////////////////////////////////////
796/// Scan parameter ipar between value of xmin and xmax
797/// A graph must be given which will be on return filled with the scan resul
798/// If the graph size is zero, a default size n = 40 will be used
799
800bool TBackCompFitter::Scan(unsigned int ipar, TGraph * gr, double xmin, double xmax )
801{
802
803 if (!gr) return false;
804 ROOT::Math::Minimizer * minimizer = fFitter->GetMinimizer();
805 if (!minimizer) {
806 Error("Scan","Minimizer is not available - cannot scan before fitting");
807 return false;
808 }
809
810 unsigned int npoints = gr->GetN();
811 if (npoints == 0) {
812 npoints = 40;
813 gr->Set(npoints);
814 }
815 bool ret = minimizer->Scan( ipar, npoints, gr->GetX(), gr->GetY(), xmin, xmax);
816 if ((int) npoints < gr->GetN() ) gr->Set(npoints);
817 return ret;
818}
819
820//______________________________________________________________________________
821// bool TBackCompFitter::Scan2D(unsigned int ipar, unsigned int jpar, TGraph2D * gr,
822// double xmin = 0, double xmax = 0, double ymin = 0, double ymax = 0) {
823// // scan the parameters ipar between values of [xmin,xmax] and
824// // jpar between values of [ymin,ymax] and
825// // a graph2D must be given which will be on return filled with the scan resul
826// // If the graph size is zero, a default size n = 20x20 will be used
827// //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
828
829// if (!gr) return false;
830// if (!fMinimizer) {
831// Error("Scan","Minimizer is not available - cannot scan before fitting");
832// return false;
833// }
834// unsigned int npoints = gr->GetN();
835// if (npoints == 0) {
836// npoints = 40;
837// gr->Set(npoints);
838// }
839// // to be implemented
840// for (unsigned int ix = 0; ix < npoints; ++ix) {
841// return fMinimizer->Scan( ipar, npoints, gr->GetX(), gr->GetY(), xmin, xmax);
842
843// }
844
845////////////////////////////////////////////////////////////////////////////////
846/// Create a 2D contour around the minimum for the parameter ipar and jpar
847/// if a minimum does not exist or is invalid it will return false
848/// on exit a TGraph is filled with the contour points
849/// the number of contour points is determined by the size of the TGraph.
850/// if the size is zero a default number of points = 20 is used
851/// pass optionally the confidence level, default is 0.683
852/// it is assumed that ErrorDef() defines the right error definition
853/// (i.e 1 sigma error for one parameter). If not the confidence level are scaled to new level
854
855bool TBackCompFitter::Contour(unsigned int ipar, unsigned int jpar, TGraph * gr, double confLevel) {
856 if (!gr) return false;
857 ROOT::Math::Minimizer * minimizer = fFitter->GetMinimizer();
858 if (!minimizer) {
859 Error("Scan","Minimizer is not available - cannot scan before fitting");
860 return false;
861 }
862
863 // get error level used for fitting
864 double upScale = fFitter->Config().MinimizerOptions().ErrorDef();
865
866 double upVal = TMath::ChisquareQuantile( confLevel, 2); // 2 is number of parameter we do the contour
867
868 // set required error definition in minimizer
869 minimizer->SetErrorDef (upScale * upVal);
870
871 unsigned int npoints = gr->GetN();
872 if (npoints == 0) {
873 npoints = 40;
874 gr->Set(npoints);
875 }
876 bool ret = minimizer->Contour( ipar, jpar, npoints, gr->GetX(), gr->GetY());
877 if ((int) npoints < gr->GetN() ) gr->Set(npoints);
878
879 // restore the error level used for fitting
880 minimizer->SetErrorDef ( upScale);
881
882 return ret;
883}
884
885
void Class()
Definition: Class.C:29
#define f(i)
Definition: RSha256.hxx:104
#define c(i)
Definition: RSha256.hxx:101
int Int_t
Definition: RtypesCore.h:41
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
const char Option_t
Definition: RtypesCore.h:62
#define ClassImp(name)
Definition: Rtypes.h:365
char name[80]
Definition: TGX11.cxx:109
float xmin
Definition: THbookFile.cxx:93
float xmax
Definition: THbookFile.cxx:93
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Definition: BinData.h:53
Chi2FCN class for binnned fits using the least square methods.
Definition: Chi2FCN.h:49
void SetDimension(int dim)
Definition: FcnAdapter.h:44
unsigned int Size() const
return number of fit points
Definition: FitData.h:303
const DataOptions & Opt() const
access to options
Definition: FitData.h:319
const double * Coords(unsigned int ipoint) const
return a pointer to the coordinates data for the given fit point
Definition: FitData.h:246
class containg the result of the fit and all the related information (fitted parameter values,...
Definition: FitResult.h:48
bool IsValid() const
True if fit successful, otherwise false.
Definition: FitResult.h:115
double UpperError(unsigned int i) const
upper Minos error. If Minos has not run for parameter i return the parabolic error
Definition: FitResult.cxx:396
double Error(unsigned int i) const
parameter error by index
Definition: FitResult.h:187
double LowerError(unsigned int i) const
lower Minos error. If Minos has not run for parameter i return the parabolic error
Definition: FitResult.cxx:389
double MinFcnValue() const
Return value of the objective function (chi2 or likelihood) used in the fit.
Definition: FitResult.h:121
double Edm() const
Expected distance from minimum.
Definition: FitResult.h:127
unsigned int NTotalParameters() const
get total number of parameters
Definition: FitResult.h:130
unsigned int NFreeParameters() const
get total number of free parameters
Definition: FitResult.h:135
double GlobalCC(unsigned int i) const
parameter global correlation coefficient
Definition: FitResult.h:211
LogLikelihoodFCN class for likelihood fits.
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
class evaluating the log likelihood for binned Poisson likelihood fits it is template to distinguish ...
Class describing the unbinned data sets (just x coordinates values) of any dimensions.
Definition: UnBinData.h:42
Documentation for the abstract class IBaseFunctionMultiDim.
Definition: IFunction.h:62
virtual IBaseFunctionMultiDimTempl< T > * Clone() const =0
Clone a function.
virtual unsigned int NDim() const =0
Retrieve the dimension of the function.
Abstract Minimizer class, defining the interface for the various minimizer (like Minuit2,...
Definition: Minimizer.h:78
void SetErrorDef(double up)
set scale for calculating the errors
Definition: Minimizer.h:464
virtual void SetFunction(const ROOT::Math::IMultiGenFunction &func)=0
set the function to minimize
virtual bool Contour(unsigned int ivar, unsigned int jvar, unsigned int &npoints, double *xi, double *xj)
find the contour points (xi, xj) of the function for parameter ivar and jvar around the minimum The c...
Definition: Minimizer.h:379
virtual bool Scan(unsigned int ivar, unsigned int &nstep, double *x, double *y, double xmin=0, double xmax=0)
scan function minimum for variable i.
Definition: Minimizer.h:367
Backward compatible implementation of TVirtualFitter.
ROOT::Math::Minimizer * fMinimizer
pointer to fitter object
void DoSetDimension()
Private method to set dimension in objective function.
virtual void SetFCN(void(*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t))
Override setFCN to use the Adapter to Minuit2 FCN interface To set the address of the minimization fu...
virtual Int_t SetParameter(Int_t ipar, const char *parname, Double_t value, Double_t verr, Double_t vlow, Double_t vhigh)
Set (add) a new fit parameter passing initial value, step size (verr) and parameter limits if vlow > ...
virtual Double_t Chisquare(Int_t npar, Double_t *params) const
Do chisquare calculations in case of likelihood fits Do evaluation a the minimum only.
virtual Int_t GetNumberFreeParameters() const
ROOT::Math::Minimizer * GetMinimizer() const
Return a pointer to the minimizer.
virtual void PrintResults(Int_t level, Double_t amin) const
Print the fit result.
virtual Double_t GetCovarianceMatrixElement(Int_t i, Int_t j) const
Get error matrix element (return all zero if matrix is not available)
virtual ~TBackCompFitter()
Destructor - delete the managed objects.
virtual Double_t GetParError(Int_t ipar) const
Parameter error.
TBackCompFitter()
Constructor needed by TVirtualFitter interface.
virtual Double_t GetSumLog(Int_t i)
Sum of log (un-needed)
virtual void ReleaseParameter(Int_t ipar)
Release a fit parameter.
virtual Int_t GetErrors(Int_t ipar, Double_t &eplus, Double_t &eminus, Double_t &eparab, Double_t &globcc) const
Get fit errors.
virtual void GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t *x, Double_t *ci, Double_t cl=0.95)
Computes point-by-point confidence intervals for the fitted function.
std::shared_ptr< ROOT::Fit::FitData > fFitData
virtual Int_t GetStats(Double_t &amin, Double_t &edm, Double_t &errdef, Int_t &nvpar, Int_t &nparx) const
Get fit statistical information.
virtual void Clear(Option_t *option="")
Clear resources for consecutive fits.
ROOT::Math::IParamMultiFunction * fModelFunc
virtual Int_t GetNumberTotalParameters() const
Number of total parameters.
virtual Double_t GetParameter(Int_t ipar) const
Parameter value.
TFitResult * GetTFitResult() const
Return a new copy of the TFitResult object which needs to be deleted later by the user.
void ReCreateMinimizer()
Recreate a minimizer instance using the function and data set objective function in minimizers functi...
std::shared_ptr< ROOT::Fit::Fitter > fFitter
data of the fit
virtual void SetFitMethod(const char *name)
Set fit method (chi2 or likelihood).
std::vector< double > fCovar
bool ValidParameterIndex(int ipar) const
Check if ipar is a valid parameter index.
virtual Bool_t IsFixed(Int_t ipar) const
Query if parameter ipar is fixed.
bool Contour(unsigned int ipar, unsigned int jpar, TGraph *gr, double confLevel=0.683)
Create a 2D contour around the minimum for the parameter ipar and jpar if a minimum does not exist or...
virtual Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs)
Execute the command (Fortran Minuit compatible interface)
virtual const char * GetParName(Int_t ipar) const
Return name of parameter ipar.
virtual void FixParameter(Int_t ipar)
Fix the parameter.
ROOT::Math::IMultiGenFunction * GetObjFunction() const
Return a pointer to the objective function (FCN) If fitting directly using TBackCompFitter the pointe...
virtual void SetObjFunction(ROOT::Math::IMultiGenFunction *f)
Set the objective function for fitting Needed if fitting directly using TBackCompFitter class The cla...
virtual Double_t * GetCovarianceMatrix() const
Get the error matrix in a pointer to a NxN array.
bool Scan(unsigned int ipar, TGraph *gr, double xmin=0, double xmax=0)
Scan parameter ipar between value of xmin and xmax A graph must be given which will be on return fill...
ROOT::Math::IMultiGenFunction * fObjFunc
Extends the ROOT::Fit::Result class with a TNamed inheritance providing easy possibility for I/O.
Definition: TFitResult.h:32
Graph 2D class with errors.
Graphics object made of three arrays X, Y and Z with the same number of points each.
Definition: TGraph2D.h:40
A TGraphErrors is a TGraph with error bars.
Definition: TGraphErrors.h:26
virtual void SetPointError(Double_t ex, Double_t ey)
Set ex and ey values for point pointed by the mouse.
A Graph is a graphics object made of two arrays X and Y with npoints each.
Definition: TGraph.h:41
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
Definition: TGraph.cxx:2198
Double_t * GetY() const
Definition: TGraph.h:131
Int_t GetN() const
Definition: TGraph.h:123
Double_t * GetX() const
Definition: TGraph.h:130
virtual void Set(Int_t n)
Set number of points in the graph Existing coordinates are preserved New coordinates above fNpoints a...
Definition: TGraph.cxx:2133
The TH1 histogram class.
Definition: TH1.h:56
virtual Int_t GetDimension() const
Definition: TH1.h:278
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Definition: TH1.cxx:8619
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition: TH1.cxx:8635
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
Definition: TH1.cxx:3579
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition: TNamed.cxx:140
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
Definition: TNamed.cxx:74
Mother of all ROOT objects.
Definition: TObject.h:37
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition: TObject.cxx:866
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
Definition: TObject.cxx:443
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:880
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Definition: TObject.cxx:854
Basic string class.
Definition: TString.h:131
void ToUpper()
Change string to upper case.
Definition: TString.cxx:1138
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition: TString.h:619
virtual TObject * GetObjectFit() const
virtual Foption_t GetFitOption() const
static const char * GetDefaultFitter()
static: return the name of the default fitter
void(* fFCN)(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
const Int_t n
Definition: legend1.C:16
TGraphErrors * gr
Definition: legend1.C:25
TH1F * h1
Definition: legend1.C:5
void FillData(BinData &dv, const TH1 *hist, TF1 *func=0)
fill the data vector from a TH1.
std::string ToString(const T &val)
Utility function for conversion to strings.
Definition: Util.h:49
static constexpr double s
static constexpr double ps
static constexpr double eplus
Double_t ChisquareQuantile(Double_t p, Double_t ndf)
Evaluate the quantiles of the chi-squared probability distribution function.
Definition: TMath.cxx:2164
int Like
Definition: Foption.h:34
auto * m
Definition: textangle.C:8
auto * l
Definition: textangle.C:4