46 fValid(false), fNormalized(false), fNFree(0), fNdf(0), fNCalls(0),
47 fStatus(-1), fCovStatus(0), fVal(0), fEdm(-1), fChi2(-1)
64 fParams(std::vector<double>( fconfig.NPar() ) ),
65 fErrors(std::vector<double>( fconfig.NPar() ) ),
66 fParNames(std::vector<std::string> ( fconfig.NPar() ) )
75 if ( (
fMinimType.find(
"Fumili") == std::string::npos) &&
76 (
fMinimType.find(
"GSLMultiFit") == std::string::npos)
82 unsigned int npar = fconfig.
NPar();
83 for (
unsigned int i = 0; i < npar; ++i ) {
97 std::cout <<
"create fit result from config - nfree " <<
fNFree << std::endl;
113 fVal = min->MinValue();
125 if ( (
fMinimType.find(
"Fumili") == std::string::npos) &&
126 (
fMinimType.find(
"GSLMultiFit") == std::string::npos)
134 const unsigned int npar = min->NDim();
135 if (npar == 0)
return;
138 fParams = std::vector<double>(min->X(), min->X() + npar);
142 for (
unsigned int i = 0; i < npar; ++i ) {
147 if (sizeOfData > min->NFree() )
fNdf = sizeOfData - min->NFree();
161 for (
unsigned int i = 0; i < npar; ++i ) {
168 unsigned int nfree = 0;
169 for (
unsigned int ipar = 0; ipar < npar; ++ipar) {
182 MATH_ERROR_MSG(
"FitResult",
"FitConfiguration and Minimizer result are not consistent");
183 std::cout <<
"Number of free parameters from FitConfig = " << nfree << std::endl;
184 std::cout <<
"Number of free parameters from Minimizer = " <<
fNFree << std::endl;
200 if (min->Errors() != 0) {
202 fErrors = std::vector<double>(min->Errors(), min->Errors() + npar ) ;
205 unsigned int r = npar * ( npar + 1 )/2;
207 for (
unsigned int i = 0; i < npar; ++i)
208 for (
unsigned int j = 0; j <= i; ++j)
214 const std::vector<unsigned int> & ipars = fconfig.
MinosParams();
215 unsigned int n = (ipars.size() > 0) ? ipars.size() : npar;
216 for (
unsigned int i = 0; i <
n; ++i) {
218 unsigned int index = (ipars.size() > 0) ? ipars[i] : i;
219 bool ret = min->GetMinosError(index, elow, eup);
226 for (
unsigned int i = 0; i < npar; ++i) {
227 double globcc = min->GlobalCC(i);
228 if (globcc < 0)
break;
250 if (
this == &rhs)
return *
this;
291bool FitResult::Update(
const std::shared_ptr<ROOT::Math::Minimizer> & min,
bool isValid,
unsigned int ncalls) {
297 const unsigned int npar =
fParams.size();
298 if (min->NDim() != npar ) {
302 if (min->X() == 0 ) {
307 if (
fNFree != min->NFree() ) {
314 fVal = min->MinValue();
320 if ( min->NCalls() > 0)
fNCalls = min->NCalls();
324 std::copy(min->X(), min->X() + npar,
fParams.begin());
330 if (min->Errors() != 0) {
334 std::copy(min->Errors(), min->Errors() + npar,
fErrors.begin() ) ;
339 unsigned int r = npar * ( npar + 1 )/2;
342 for (
unsigned int i = 0; i < npar; ++i) {
343 for (
unsigned int j = 0; j <= i; ++j)
350 for (
unsigned int i = 0; i < npar; ++i) {
351 double globcc = min->GlobalCC(i);
368 for (
unsigned int i = 0; i <
fErrors.size() ; ++i)
370 for (
unsigned int i = 0; i <
fCovMatrix.size() ; ++i)
384 std::map<unsigned int, std::pair<double,double> >::const_iterator itr =
fMinosErrors.find(i);
392 std::map<unsigned int, std::pair<double,double> >::const_iterator itr =
fMinosErrors.find(i);
399 std::map<unsigned int, std::pair<double,double> >::const_iterator itr =
fMinosErrors.find(i);
411 unsigned int npar =
fParams.size();
412 for (
unsigned int i = 0; i < npar; ++i)
427 std::map<unsigned int, unsigned int>::const_iterator itr =
fBoundParams.find(ipar);
429 lower = -std::numeric_limits<Double_t>::infinity();
430 upper = std::numeric_limits<Double_t>::infinity();
449 unsigned int npar =
fParams.size();
451 os <<
"<Empty FitResult>\n";
454 os <<
"\n****************************************\n";
457 os <<
" Invalid FitResult";
458 os <<
" (status = " <<
fStatus <<
" )";
461 os <<
" FitResult before fitting";
463 os <<
"\n****************************************\n";
467 os <<
"Minimizer is " <<
fMinimType << std::endl;
468 const unsigned int nw = 25;
469 const unsigned int nn = 12;
470 const std::ios_base::fmtflags prFmt = os.setf(std::ios::left,std::ios::adjustfield);
473 os << std::left << std::setw(nw) <<
"MinFCN" <<
" = " << std::right << std::setw(nn) <<
fVal << std::endl;
475 os << std::left << std::setw(nw) <<
"Chi2" <<
" = " << std::right << std::setw(nn) <<
fChi2 << std::endl;
476 os << std::left << std::setw(nw) <<
"NDf" <<
" = " << std::right << std::setw(nn) <<
fNdf << std::endl;
477 if (
fMinimType.find(
"Linear") == std::string::npos) {
478 if (
fEdm >=0) os << std::left << std::setw(nw) <<
"Edm" <<
" = " << std::right << std::setw(nn) <<
fEdm << std::endl;
479 os << std::left << std::setw(nw) <<
"NCalls" <<
" = " << std::right << std::setw(nn) <<
fNCalls << std::endl;
481 for (
unsigned int i = 0; i < npar; ++i) {
483 os <<
" = " << std::right << std::setw(nn) <<
fParams[i];
485 os << std::setw(9) <<
" " << std::setw(nn) <<
" " <<
" \t (fixed)";
488 os <<
" +/- " << std::left << std::setw(nn) <<
fErrors[i] << std::right;
490 os <<
" \t (limited)";
496 if (prFmt != os.flags() ) os.setf(prFmt, std::ios::adjustfield);
506 os <<
"\nCovariance Matrix:\n\n";
507 unsigned int npar =
fParams.size();
509 const int kWidth = 8;
511 const int matw = kWidth+4;
514 int prevPrec = os.precision(kPrec);
515 const std::ios_base::fmtflags prevFmt = os.flags();
517 os << std::setw(parw) <<
" " <<
"\t";
518 for (
unsigned int i = 0; i < npar; ++i) {
524 for (
unsigned int i = 0; i < npar; ++i) {
527 for (
unsigned int j = 0; j < npar; ++j) {
529 os.precision(kPrec); os.width(kWidth); os << std::right << std::setw(matw) <<
CovMatrix(i,j);
536 os <<
"\nCorrelation Matrix:\n\n";
537 os << std::setw(parw) <<
" " <<
"\t";
538 for (
unsigned int i = 0; i < npar; ++i) {
544 for (
unsigned int i = 0; i < npar; ++i) {
546 os << std::left << std::setw(parw) << std::left <<
GetParameterName(i) <<
"\t";
547 for (
unsigned int j = 0; j < npar; ++j) {
549 os.precision(kPrec); os.width(kWidth); os << std::right << std::setw(matw) <<
Correlation(i,j);
556 os.setf(prevFmt, std::ios::adjustfield);
557 os.precision(prevPrec);
569 MATH_ERROR_MSG(
"FitResult::GetConfidenceIntervals",
"Cannot compute Confidence Intervals without fit model function");
575 double corrFactor = 1;
576 if (
fChi2 <= 0 ||
fNdf == 0) norm =
false;
585 unsigned int ndim =
fFitFunc->NDim();
586 unsigned int npar =
fFitFunc->NPar();
588 std::vector<double> xpoint(ndim);
589 std::vector<double> grad(npar);
590 std::vector<double> vsum(npar);
593 for (
unsigned int ipoint = 0; ipoint <
n; ++ipoint) {
595 for (
unsigned int kdim = 0; kdim < ndim; ++kdim) {
596 unsigned int i = ipoint * stride1 + kdim * stride2;
603 for (
unsigned int ipar = 0; ipar < npar; ++ipar) {
606 d.SetFunction(fadapter);
610 d.SetStepSize( std::max(
fErrors[ipar]*1.E-5, 1.E-15) );
612 d.SetStepSize( std::min(std::max(
fParams[ipar]*1.E-5, 1.E-15), 0.0001 ) );
621 vsum.assign(npar,0.0);
622 for (
unsigned int ipar = 0; ipar < npar; ++ipar) {
623 for (
unsigned int jpar = 0; jpar < npar; ++jpar) {
624 vsum[ipar] +=
CovMatrix(ipar,jpar) * grad[jpar];
629 for (
unsigned int ipar = 0; ipar < npar; ++ipar) {
630 r2 += grad[ipar] * vsum[ipar];
633 ci[ipoint] =
r * corrFactor;
641 unsigned int ndim = data.
NDim();
642 unsigned int np = data.
NPoints();
643 std::vector<double> xdata( ndim * np );
644 for (
unsigned int i = 0; i < np ; ++i) {
645 const double *
x = data.
Coords(i);
646 std::vector<double>::iterator itr = xdata.begin()+ ndim * i;
647 std::copy(
x,
x+ndim,itr);
657 std::vector<double> result;
659 result.resize(data->
NPoints() );
663 MATH_ERROR_MSG(
"FitResult::GetConfidenceIntervals",
"Cannot compute Confidence Intervals without the fit bin data");
695 if (!pntsx || !pntsy || !npoints)
699 MATH_ERROR_MSG(
"FitResult::Scan",
"Minimizer is not available - cannot Scan");
714bool FitResult::Contour(
unsigned int ipar,
unsigned int jpar,
unsigned int &npoints,
double *pntsx,
double *pntsy,
double confLevel)
716 if (!pntsx || !pntsy || !npoints)
720 MATH_ERROR_MSG(
"FitResult::Contour",
"Minimizer is not available - cannot produce Contour");
732 bool ret =
fMinimizer->Contour(ipar, jpar, npoints, pntsx, pntsy);
#define MATH_ERROR_MSG(loc, str)
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Class describing the configuration of the fit, options and parameter settings using the ROOT::Fit::Pa...
const std::vector< unsigned int > & MinosParams() const
return vector of parameter indeces for which the Minos Error will be computed
const std::string & MinimizerAlgoType() const
return type of minimizer algorithms
unsigned int NPar() const
number of parameters settings
const std::string & MinimizerType() const
return type of minimizer package
const ParameterSettings & ParSettings(unsigned int i) const
get the parameter settings for the i-th parameter (const method)
bool MinosErrors() const
do minos errros analysis on the parameters
unsigned int NPoints() const
return number of fit points
unsigned int NDim() const
return coordinate data dimension
const double * Coords(unsigned int ipoint) const
return a pointer to the coordinates data for the given fit point
class containg the result of the fit and all the related information (fitted parameter values,...
std::vector< double > fGlobalCC
std::map< unsigned int, unsigned int > fBoundParams
const BinData * FittedBinData() const
return BinData used in the fit (return a nullptr in case a different fit is done or the data are not ...
double UpperError(unsigned int i) const
upper Minos error. If Minos has not run for parameter i return the parabolic error
void FillResult(const std::shared_ptr< ROOT::Math::Minimizer > &min, const FitConfig &fconfig, const std::shared_ptr< IModelFunction > &f, bool isValid, unsigned int sizeOfData=0, bool binFit=true, const ROOT::Math::IMultiGenFunction *chi2func=0, unsigned int ncalls=0)
Fill the fit result from a Minimizer instance after fitting Run also Minos if requested from the conf...
FitResult & operator=(const FitResult &rhs)
Assignment operator.
std::vector< double > fErrors
std::shared_ptr< ROOT::Math::Minimizer > fMinimizer
bool IsParameterFixed(unsigned int ipar) const
query if a parameter is fixed
double Error(unsigned int i) const
parameter error by index
double CovMatrix(unsigned int i, unsigned int j) const
retrieve covariance matrix element
void GetConfidenceIntervals(unsigned int n, unsigned int stride1, unsigned int stride2, const double *x, double *ci, double cl=0.95, bool norm=false) const
get confidence intervals for an array of n points x.
bool Scan(unsigned int ipar, unsigned int &npoints, double *pntsx, double *pntsy, double xmin=0, double xmax=0)
scan likelihood value of parameter and fill the given graph.
FitResult()
Default constructor for an empty (non valid) fit result.
std::shared_ptr< FitData > fFitData
model function resulting from the fit.
std::string GetParameterName(unsigned int ipar) const
get name of parameter (deprecated)
bool ParameterBounds(unsigned int ipar, double &lower, double &upper) const
retrieve parameter bounds - return false if parameter is not bound
std::vector< double > fParams
std::vector< double > fCovMatrix
void SetMinosError(unsigned int i, double elow, double eup)
set the Minos errors for parameter i (called by the Fitter class when running Minos)
void Print(std::ostream &os, bool covmat=false) const
print the result and optionaly covariance matrix and correlations
double LowerError(unsigned int i) const
lower Minos error. If Minos has not run for parameter i return the parabolic error
void PrintCovMatrix(std::ostream &os) const
print error matrix and correlations
bool Contour(unsigned int ipar, unsigned int jpar, unsigned int &npoints, double *pntsx, double *pntsy, double confLevel=0.683)
create contour of two parameters around the minimum pass as option confidence level: default is a val...
bool HasMinosError(unsigned int i) const
query if parameter i has the Minos error
std::vector< std::pair< double, double > > fParamBounds
std::shared_ptr< IModelFunction > fFitFunc
objective function used for fitting
std::map< unsigned int, bool > fFixedParams
data set used in the fit
double Correlation(unsigned int i, unsigned int j) const
retrieve correlation elements
bool Update(const std::shared_ptr< ROOT::Math::Minimizer > &min, bool isValid, unsigned int ncalls=0)
Update the fit result with a new minimization status To be run only if same fit is performed with sam...
std::shared_ptr< ROOT::Math::IMultiGenFunction > fObjFunc
minimizer object used for fitting
virtual ~FitResult()
Destructor.
int Index(const std::string &name) const
get index for parameter name (return -1 if not found)
double Prob() const
p value of the fit (chi2 probability)
std::string ParName(unsigned int i) const
name of the parameter
void NormalizeErrors()
normalize errors using chi2/ndf for chi2 fits
bool IsParameterBound(unsigned int ipar) const
query if a parameter is bound
std::vector< std::string > fParNames
std::map< unsigned int, std::pair< double, double > > fMinosErrors
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
bool IsFixed() const
check if is fixed
bool HasUpperLimit() const
check if parameter has upper limit
double LowerLimit() const
return lower limit value
const std::string & Name() const
return name
bool HasLowerLimit() const
check if parameter has lower limit
double Value() const
copy constructor and assignment operators (leave them to the compiler)
double StepSize() const
return step size
double UpperLimit() const
return upper limit value
bool IsBound() const
check if is bound
Documentation for the abstract class IBaseFunctionMultiDim.
OneDimParamFunctionAdapter class to wrap a multi-dim parameteric function in one dimensional one.
User class for calculating the derivatives of a function.
double chisquared_cdf_c(double x, double r, double x0=0)
Complement of the cumulative distribution function of the distribution with degrees of freedom (upp...
double chisquared_quantile(double z, double r)
Inverse ( ) of the cumulative distribution function of the lower tail of the distribution with degr...
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
const int gInitialResultStatus
std::string ToString(const T &val)
Utility function for conversion to strings.
Namespace for new ROOT classes and functions.
static constexpr double s
Double_t ChisquareQuantile(Double_t p, Double_t ndf)
Evaluate the quantiles of the chi-squared probability distribution function.
Double_t StudentQuantile(Double_t p, Double_t ndf, Bool_t lower_tail=kTRUE)
Computes quantiles of the Student's t-distribution 1st argument is the probability,...