Logo ROOT   6.18/05
Reference Guide
FitResult.cxx
Go to the documentation of this file.
1// @(#)root/mathcore:$Id$
2// Author: L. Moneta Wed Aug 30 11:05:34 2006
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT *
7 * *
8 * *
9 **********************************************************************/
10
11// Implementation file for class FitResult
12
13#include "Fit/FitResult.h"
14
15#include "Fit/FitConfig.h"
16
17#include "Fit/BinData.h"
18
19//#include "Fit/Chi2FCN.h"
20
21#include "Math/Minimizer.h"
22
23#include "Math/IParamFunction.h"
25
28
29#include "TMath.h"
31#include "Math/Error.h"
32
33#include <cassert>
34#include <cmath>
35#include <iostream>
36#include <iomanip>
37
38namespace ROOT {
39
40 namespace Fit {
41
42
43const int gInitialResultStatus = -99; // use this special convention to flag it when printing result
44
46 fValid(false), fNormalized(false), fNFree(0), fNdf(0), fNCalls(0),
47 fStatus(-1), fCovStatus(0), fVal(0), fEdm(-1), fChi2(-1)
48{
49 // Default constructor implementation.
50}
51
53 fValid(false),
54 fNormalized(false),
55 fNFree(0),
56 fNdf(0),
57 fNCalls(0),
58 fStatus(gInitialResultStatus),
59 fCovStatus(0),
60 fVal(0),
61 fEdm(-1),
62 fChi2(-1),
63 fFitFunc(0),
64 fParams(std::vector<double>( fconfig.NPar() ) ),
65 fErrors(std::vector<double>( fconfig.NPar() ) ),
66 fParNames(std::vector<std::string> ( fconfig.NPar() ) )
67{
68 // create a Fit result from a fit config (i.e. with initial parameter values
69 // and errors equal to step values
70 // The model function is NULL in this case
71
72 // set minimizer type and algorithm
73 fMinimType = fconfig.MinimizerType();
74 // append algorithm name for minimizer that support it
75 if ( (fMinimType.find("Fumili") == std::string::npos) &&
76 (fMinimType.find("GSLMultiFit") == std::string::npos)
77 ) {
78 if (fconfig.MinimizerAlgoType() != "") fMinimType += " / " + fconfig.MinimizerAlgoType();
79 }
80
81 // get parameter values and errors (step sizes)
82 unsigned int npar = fconfig.NPar();
83 for (unsigned int i = 0; i < npar; ++i ) {
84 const ParameterSettings & par = fconfig.ParSettings(i);
85 fParams[i] = par.Value();
86 fErrors[i] = par.StepSize();
87 fParNames[i] = par.Name();
88 if (par.IsFixed() ) fFixedParams[i] = true;
89 else fNFree++;
90 if (par.IsBound() ) {
91 double lower = (par.HasLowerLimit()) ? par.LowerLimit() : - std::numeric_limits<double>::infinity() ;
92 double upper = (par.HasUpperLimit()) ? par.UpperLimit() : std::numeric_limits<double>::infinity() ;
93 fBoundParams[i] = fParamBounds.size();
94 fParamBounds.push_back(std::make_pair(lower,upper));
95 }
96 }
97 std::cout << "create fit result from config - nfree " << fNFree << std::endl;
98}
99
100void FitResult::FillResult(const std::shared_ptr<ROOT::Math::Minimizer> & min, const FitConfig & fconfig, const std::shared_ptr<IModelFunction> & func,
101 bool isValid, unsigned int sizeOfData, bool binnedFit, const ROOT::Math::IMultiGenFunction * chi2func, unsigned int ncalls )
102{
103 // Fill the FitResult after minimization using result from Minimizers
104
105 // minimizer must exist
106 assert(min);
107
108 fValid = isValid;
109 fNFree= min->NFree();
110 fNCalls = min->NCalls();
111 fStatus = min->Status();
112 fCovStatus= min->CovMatrixStatus();
113 fVal = min->MinValue();
114 fEdm = min->Edm();
115
116 fMinimizer= min;
117 fFitFunc = func;
118
119
120
121 // set minimizer type
122 fMinimType = fconfig.MinimizerType();
123
124 // append algorithm name for minimizer that support it
125 if ( (fMinimType.find("Fumili") == std::string::npos) &&
126 (fMinimType.find("GSLMultiFit") == std::string::npos)
127 ) {
128 if (fconfig.MinimizerAlgoType() != "") fMinimType += " / " + fconfig.MinimizerAlgoType();
129 }
130
131 // replace ncalls if minimizer does not support it (they are taken then from the FitMethodFunction)
132 if (fNCalls == 0) fNCalls = ncalls;
133
134 const unsigned int npar = min->NDim();
135 if (npar == 0) return;
136
137 if (min->X() )
138 fParams = std::vector<double>(min->X(), min->X() + npar);
139 else {
140 // case minimizer does not provide minimum values (it failed) take from configuration
141 fParams.resize(npar);
142 for (unsigned int i = 0; i < npar; ++i ) {
143 fParams[i] = ( fconfig.ParSettings(i).Value() );
144 }
145 }
146
147 if (sizeOfData > min->NFree() ) fNdf = sizeOfData - min->NFree();
148
149
150 // set right parameters in function (in case minimizer did not do before)
151 // do also when fit is not valid
152 if (func ) {
153 // I think we can avoid cloning the model function
154 //fFitFunc = dynamic_cast<IModelFunction *>( func->Clone() );
155 //assert(fFitFunc);
156 fFitFunc->SetParameters(&fParams.front());
157 }
158 else {
159 // when no fFitFunc is present take parameters from FitConfig
160 fParNames.reserve( npar );
161 for (unsigned int i = 0; i < npar; ++i ) {
162 fParNames.push_back( fconfig.ParSettings(i).Name() );
163 }
164 }
165
166
167 // check for fixed or limited parameters
168 unsigned int nfree = 0;
169 for (unsigned int ipar = 0; ipar < npar; ++ipar) {
170 const ParameterSettings & par = fconfig.ParSettings(ipar);
171 if (par.IsFixed() ) fFixedParams[ipar] = true;
172 else nfree++;
173 if (par.IsBound() ) {
174 double lower = (par.HasLowerLimit()) ? par.LowerLimit() : - std::numeric_limits<double>::infinity() ;
175 double upper = (par.HasUpperLimit()) ? par.UpperLimit() : std::numeric_limits<double>::infinity() ;
176 fBoundParams[ipar] = fParamBounds.size();
177 fParamBounds.push_back(std::make_pair(lower,upper));
178 }
179 }
180 // check if nfree (from FitConfig) and fNFree (from minimizer) are consistent
181 if (nfree != fNFree ) {
182 MATH_ERROR_MSG("FitResult","FitConfiguration and Minimizer result are not consistent");
183 std::cout << "Number of free parameters from FitConfig = " << nfree << std::endl;
184 std::cout << "Number of free parameters from Minimizer = " << fNFree << std::endl;
185 }
186
187 // if flag is binned compute a chi2 when a chi2 function is given
188 if (binnedFit) {
189 if (chi2func == 0)
190 fChi2 = fVal;
191 else {
192 // compute chi2 equivalent for likelihood fits
193 // NB: empty bins are considered
194 fChi2 = (*chi2func)(&fParams[0]);
195 }
196 }
197
198 // fill error matrix
199 // if minimizer provides error provides also error matrix
200 if (min->Errors() != 0) {
201
202 fErrors = std::vector<double>(min->Errors(), min->Errors() + npar ) ;
203
204 if (fCovStatus != 0) {
205 unsigned int r = npar * ( npar + 1 )/2;
206 fCovMatrix.reserve(r);
207 for (unsigned int i = 0; i < npar; ++i)
208 for (unsigned int j = 0; j <= i; ++j)
209 fCovMatrix.push_back(min->CovMatrix(i,j) );
210 }
211
212 // minos errors
213 if (fValid && fconfig.MinosErrors()) {
214 const std::vector<unsigned int> & ipars = fconfig.MinosParams();
215 unsigned int n = (ipars.size() > 0) ? ipars.size() : npar;
216 for (unsigned int i = 0; i < n; ++i) {
217 double elow, eup;
218 unsigned int index = (ipars.size() > 0) ? ipars[i] : i;
219 bool ret = min->GetMinosError(index, elow, eup);
220 if (ret) SetMinosError(index, elow, eup);
221 }
222 }
223
224 // globalCC
225 fGlobalCC.reserve(npar);
226 for (unsigned int i = 0; i < npar; ++i) {
227 double globcc = min->GlobalCC(i);
228 if (globcc < 0) break; // it is not supported by that minimizer
229 fGlobalCC.push_back(globcc);
230 }
231
232 }
233
234}
235
237 // destructor. FitResult manages the fit Function pointer
238 //if (fFitFunc) delete fFitFunc;
239}
240
242 fFitFunc(0)
243{
244 // Implementation of copy constructor
245 (*this) = rhs;
246}
247
249 // Implementation of assignment operator.
250 if (this == &rhs) return *this; // time saving self-test
251
252 // Manages the fitted function
253 // if (fFitFunc) delete fFitFunc;
254 // fFitFunc = 0;
255 // if (rhs.fFitFunc != 0 ) {
256 // fFitFunc = dynamic_cast<IModelFunction *>( (rhs.fFitFunc)->Clone() );
257 // assert(fFitFunc != 0);
258 // }
259
260 // copy all other data members
261 fValid = rhs.fValid;
263 fNFree = rhs.fNFree;
264 fNdf = rhs.fNdf;
265 fNCalls = rhs.fNCalls;
267 fStatus = rhs.fStatus;
268 fVal = rhs.fVal;
269 fEdm = rhs.fEdm;
270 fChi2 = rhs.fChi2;
272 fObjFunc = rhs.fObjFunc;
273 fFitFunc = rhs.fFitFunc;
274
278 fParams = rhs.fParams;
279 fErrors = rhs.fErrors;
281 fGlobalCC = rhs.fGlobalCC;
283
285 fParNames = rhs.fParNames;
286
287 return *this;
288
289}
290
291bool FitResult::Update(const std::shared_ptr<ROOT::Math::Minimizer> & min, bool isValid, unsigned int ncalls) {
292 // update fit result with new status from minimizer
293 // ncalls if it is not zero is used instead of value from minimizer
294
295 fMinimizer = min;
296
297 const unsigned int npar = fParams.size();
298 if (min->NDim() != npar ) {
299 MATH_ERROR_MSG("FitResult::Update","Wrong minimizer status ");
300 return false;
301 }
302 if (min->X() == 0 ) {
303 MATH_ERROR_MSG("FitResult::Update","Invalid minimizer status ");
304 return false;
305 }
306 //fNFree = min->NFree();
307 if (fNFree != min->NFree() ) {
308 MATH_ERROR_MSG("FitResult::Update","Configuration has changed ");
309 return false;
310 }
311
312 fValid = isValid;
313 // update minimum value
314 fVal = min->MinValue();
315 fEdm = min->Edm();
316 fStatus = min->Status();
317 fCovStatus = min->CovMatrixStatus();
318
319 // update number of function calls
320 if ( min->NCalls() > 0) fNCalls = min->NCalls();
321 else fNCalls = ncalls;
322
323 // copy parameter value and errors
324 std::copy(min->X(), min->X() + npar, fParams.begin());
325
326
327 // set parameters in fit model function
328 if (fFitFunc) fFitFunc->SetParameters(&fParams.front());
329
330 if (min->Errors() != 0) {
331
332 if (fErrors.size() != npar) fErrors.resize(npar);
333
334 std::copy(min->Errors(), min->Errors() + npar, fErrors.begin() ) ;
335
336 if (fCovStatus != 0) {
337
338 // update error matrix
339 unsigned int r = npar * ( npar + 1 )/2;
340 if (fCovMatrix.size() != r) fCovMatrix.resize(r);
341 unsigned int l = 0;
342 for (unsigned int i = 0; i < npar; ++i) {
343 for (unsigned int j = 0; j <= i; ++j)
344 fCovMatrix[l++] = min->CovMatrix(i,j);
345 }
346 }
347
348 // update global CC
349 if (fGlobalCC.size() != npar) fGlobalCC.resize(npar);
350 for (unsigned int i = 0; i < npar; ++i) {
351 double globcc = min->GlobalCC(i);
352 if (globcc < 0) {
353 fGlobalCC.clear();
354 break; // it is not supported by that minimizer
355 }
356 fGlobalCC[i] = globcc;
357 }
358
359 }
360 return true;
361}
362
364 // normalize errors and covariance matrix according to chi2 value
365 if (fNdf == 0 || fChi2 <= 0) return;
366 double s2 = fChi2/fNdf;
367 double s = std::sqrt(fChi2/fNdf);
368 for (unsigned int i = 0; i < fErrors.size() ; ++i)
369 fErrors[i] *= s;
370 for (unsigned int i = 0; i < fCovMatrix.size() ; ++i)
371 fCovMatrix[i] *= s2;
372
373 fNormalized = true;
374}
375
376
377double FitResult::Prob() const {
378 // fit probability
379 return ROOT::Math::chisquared_cdf_c(fChi2, static_cast<double>(fNdf) );
380}
381
382bool FitResult::HasMinosError(unsigned int i) const {
383 // query if the parameter i has the Minos error
384 std::map<unsigned int, std::pair<double,double> >::const_iterator itr = fMinosErrors.find(i);
385 return (itr != fMinosErrors.end() );
386}
387
388
389double FitResult::LowerError(unsigned int i) const {
390 // return lower Minos error for parameter i
391 // return the parabolic error if Minos error has not been calculated for the parameter i
392 std::map<unsigned int, std::pair<double,double> >::const_iterator itr = fMinosErrors.find(i);
393 return ( itr != fMinosErrors.end() ) ? itr->second.first : Error(i) ;
394}
395
396double FitResult::UpperError(unsigned int i) const {
397 // return upper Minos error for parameter i
398 // return the parabolic error if Minos error has not been calculated for the parameter i
399 std::map<unsigned int, std::pair<double,double> >::const_iterator itr = fMinosErrors.find(i);
400 return ( itr != fMinosErrors.end() ) ? itr->second.second : Error(i) ;
401}
402
403void FitResult::SetMinosError(unsigned int i, double elow, double eup) {
404 // set the Minos error for parameter i
405 fMinosErrors[i] = std::make_pair(elow,eup);
406}
407
408int FitResult::Index(const std::string & name) const {
409 // find index for given parameter name
410 if (! fFitFunc) return -1;
411 unsigned int npar = fParams.size();
412 for (unsigned int i = 0; i < npar; ++i)
413 if ( fFitFunc->ParameterName(i) == name) return i;
414
415 return -1; // case name is not found
416}
417
418bool FitResult::IsParameterBound(unsigned int ipar) const {
419 return fBoundParams.find(ipar) != fBoundParams.end();
420}
421
422bool FitResult::IsParameterFixed(unsigned int ipar) const {
423 return fFixedParams.find(ipar) != fFixedParams.end();
424}
425
426bool FitResult::ParameterBounds(unsigned int ipar, double & lower, double & upper) const {
427 std::map<unsigned int, unsigned int>::const_iterator itr = fBoundParams.find(ipar);
428 if (itr == fBoundParams.end() ) {
429 lower = -std::numeric_limits<Double_t>::infinity();
430 upper = std::numeric_limits<Double_t>::infinity();
431 return false;
432 }
433 assert(itr->second < fParamBounds.size() );
434 lower = fParamBounds[itr->second].first;
435 upper = fParamBounds[itr->second].second;
436 return false;
437}
438
439std::string FitResult::ParName(unsigned int ipar) const {
440 // return parameter name
441 if (fFitFunc) return fFitFunc->ParameterName(ipar);
442 else if (ipar < fParNames.size() ) return fParNames[ipar];
443 return "param_" + ROOT::Math::Util::ToString(ipar);
444}
445
446void FitResult::Print(std::ostream & os, bool doCovMatrix) const {
447 // print the result in the given stream
448 // need to add also minos errors , globalCC, etc..
449 unsigned int npar = fParams.size();
450 if (npar == 0) {
451 os << "<Empty FitResult>\n";
452 return;
453 }
454 os << "\n****************************************\n";
455 if (!fValid) {
457 os << " Invalid FitResult";
458 os << " (status = " << fStatus << " )";
459 }
460 else {
461 os << " FitResult before fitting";
462 }
463 os << "\n****************************************\n";
464 }
465
466 //os << " FitResult \n\n";
467 os << "Minimizer is " << fMinimType << std::endl;
468 const unsigned int nw = 25; // spacing for text
469 const unsigned int nn = 12; // spacing for numbers
470 const std::ios_base::fmtflags prFmt = os.setf(std::ios::left,std::ios::adjustfield); // set left alignment
471
472 if (fVal != fChi2 || fChi2 < 0)
473 os << std::left << std::setw(nw) << "MinFCN" << " = " << std::right << std::setw(nn) << fVal << std::endl;
474 if (fChi2 >= 0)
475 os << std::left << std::setw(nw) << "Chi2" << " = " << std::right << std::setw(nn) << fChi2 << std::endl;
476 os << std::left << std::setw(nw) << "NDf" << " = " << std::right << std::setw(nn) << fNdf << std::endl;
477 if (fMinimType.find("Linear") == std::string::npos) { // no need to print this for linear fits
478 if (fEdm >=0) os << std::left << std::setw(nw) << "Edm" << " = " << std::right << std::setw(nn) << fEdm << std::endl;
479 os << std::left << std::setw(nw) << "NCalls" << " = " << std::right << std::setw(nn) << fNCalls << std::endl;
480 }
481 for (unsigned int i = 0; i < npar; ++i) {
482 os << std::left << std::setw(nw) << GetParameterName(i);
483 os << " = " << std::right << std::setw(nn) << fParams[i];
484 if (IsParameterFixed(i) )
485 os << std::setw(9) << " " << std::setw(nn) << " " << " \t (fixed)";
486 else {
487 if (fErrors.size() != 0)
488 os << " +/- " << std::left << std::setw(nn) << fErrors[i] << std::right;
489 if (IsParameterBound(i) )
490 os << " \t (limited)";
491 }
492 os << std::endl;
493 }
494
495 // restore stremam adjustfield
496 if (prFmt != os.flags() ) os.setf(prFmt, std::ios::adjustfield);
497
498 if (doCovMatrix) PrintCovMatrix(os);
499}
500
501void FitResult::PrintCovMatrix(std::ostream &os) const {
502 // print the covariance and correlation matrix
503 if (!fValid) return;
504 if (fCovMatrix.size() == 0) return;
505// os << "****************************************\n";
506 os << "\nCovariance Matrix:\n\n";
507 unsigned int npar = fParams.size();
508 const int kPrec = 5;
509 const int kWidth = 8;
510 const int parw = 12;
511 const int matw = kWidth+4;
512
513 // query previous precision and format flags
514 int prevPrec = os.precision(kPrec);
515 const std::ios_base::fmtflags prevFmt = os.flags();
516
517 os << std::setw(parw) << " " << "\t";
518 for (unsigned int i = 0; i < npar; ++i) {
519 if (!IsParameterFixed(i) ) {
520 os << std::right << std::setw(matw) << GetParameterName(i) ;
521 }
522 }
523 os << std::endl;
524 for (unsigned int i = 0; i < npar; ++i) {
525 if (!IsParameterFixed(i) ) {
526 os << std::left << std::setw(parw) << GetParameterName(i) << "\t";
527 for (unsigned int j = 0; j < npar; ++j) {
528 if (!IsParameterFixed(j) ) {
529 os.precision(kPrec); os.width(kWidth); os << std::right << std::setw(matw) << CovMatrix(i,j);
530 }
531 }
532 os << std::endl;
533 }
534 }
535// os << "****************************************\n";
536 os << "\nCorrelation Matrix:\n\n";
537 os << std::setw(parw) << " " << "\t";
538 for (unsigned int i = 0; i < npar; ++i) {
539 if (!IsParameterFixed(i) ) {
540 os << std::right << std::setw(matw) << GetParameterName(i) ;
541 }
542 }
543 os << std::endl;
544 for (unsigned int i = 0; i < npar; ++i) {
545 if (!IsParameterFixed(i) ) {
546 os << std::left << std::setw(parw) << std::left << GetParameterName(i) << "\t";
547 for (unsigned int j = 0; j < npar; ++j) {
548 if (!IsParameterFixed(j) ) {
549 os.precision(kPrec); os.width(kWidth); os << std::right << std::setw(matw) << Correlation(i,j);
550 }
551 }
552 os << std::endl;
553 }
554 }
555 // restore alignment and precision
556 os.setf(prevFmt, std::ios::adjustfield);
557 os.precision(prevPrec);
558}
559
560void FitResult::GetConfidenceIntervals(unsigned int n, unsigned int stride1, unsigned int stride2, const double * x, double * ci, double cl, bool norm ) const {
561 // stride1 stride in coordinate stride2 stride in dimension space
562 // i.e. i-th point in k-dimension is x[ stride1 * i + stride2 * k]
563 // compute the confidence interval of the fit on the given data points
564 // the dimension of the data points must match the dimension of the fit function
565 // confidence intervals are returned in array ci
566
567 if (!fFitFunc) {
568 // check if model function exists
569 MATH_ERROR_MSG("FitResult::GetConfidenceIntervals","Cannot compute Confidence Intervals without fit model function");
570 return;
571 }
572 assert(fFitFunc);
573
574 // use student quantile in case of normalized errors
575 double corrFactor = 1;
576 if (fChi2 <= 0 || fNdf == 0) norm = false;
577 if (norm)
578 corrFactor = TMath::StudentQuantile(0.5 + cl/2, fNdf) * std::sqrt( fChi2/fNdf );
579 else
580 // value to go up in chi2 (1: 1 sigma error(CL=0.683) , 4: 2 sigma errors
581 corrFactor = ROOT::Math::chisquared_quantile(cl, 1);
582
583
584
585 unsigned int ndim = fFitFunc->NDim();
586 unsigned int npar = fFitFunc->NPar();
587
588 std::vector<double> xpoint(ndim);
589 std::vector<double> grad(npar);
590 std::vector<double> vsum(npar);
591
592 // loop on the points
593 for (unsigned int ipoint = 0; ipoint < n; ++ipoint) {
594
595 for (unsigned int kdim = 0; kdim < ndim; ++kdim) {
596 unsigned int i = ipoint * stride1 + kdim * stride2;
597 assert(i < ndim*n);
598 xpoint[kdim] = x[i];
599 }
600
601 // calculate gradient of fitted function w.r.t the parameters
603 for (unsigned int ipar = 0; ipar < npar; ++ipar) {
604 if (!IsParameterFixed(ipar)) {
606 d.SetFunction(fadapter);
607 // compute step size as a small fraction of the error
608 // (see numerical recipes in C 5.7.8) 1.E-5 is ~ (eps)^1/3
609 if ( fErrors[ipar] > 0 )
610 d.SetStepSize( std::max( fErrors[ipar]*1.E-5, 1.E-15) );
611 else
612 d.SetStepSize( std::min(std::max(fParams[ipar]*1.E-5, 1.E-15), 0.0001 ) );
613
614 grad[ipar] = d(fParams[ipar] ); // evaluate df/dp
615 }
616 else
617 grad[ipar] = 0.; // for fixed parameters
618 }
619
620 // multiply covariance matrix with gradient
621 vsum.assign(npar,0.0);
622 for (unsigned int ipar = 0; ipar < npar; ++ipar) {
623 for (unsigned int jpar = 0; jpar < npar; ++jpar) {
624 vsum[ipar] += CovMatrix(ipar,jpar) * grad[jpar];
625 }
626 }
627 // multiply gradient by vsum
628 double r2 = 0;
629 for (unsigned int ipar = 0; ipar < npar; ++ipar) {
630 r2 += grad[ipar] * vsum[ipar];
631 }
632 double r = std::sqrt(r2);
633 ci[ipoint] = r * corrFactor;
634 }
635}
636
637void FitResult::GetConfidenceIntervals(const BinData & data, double * ci, double cl, bool norm ) const {
638 // implement confidence intervals from a given bin data sets
639 // currently copy the data from Bindata.
640 // could implement otherwise directly
641 unsigned int ndim = data.NDim();
642 unsigned int np = data.NPoints();
643 std::vector<double> xdata( ndim * np );
644 for (unsigned int i = 0; i < np ; ++i) {
645 const double * x = data.Coords(i);
646 std::vector<double>::iterator itr = xdata.begin()+ ndim * i;
647 std::copy(x,x+ndim,itr);
648 }
649 // points are arraned as x0,y0,z0, ....xN,yN,zN (stride1=ndim, stride2=1)
650 GetConfidenceIntervals(np,ndim,1,&xdata.front(),ci,cl,norm);
651}
652
653std::vector<double> FitResult::GetConfidenceIntervals(double cl, bool norm ) const {
654 // implement confidence intervals using stored data sets (if can be retrieved from objective function)
655 // it works only in case of chi2 or binned likelihood fits
656 const BinData * data = FittedBinData();
657 std::vector<double> result;
658 if (data) {
659 result.resize(data->NPoints() );
660 GetConfidenceIntervals(*data, result.data(), cl, norm);
661 }
662 else {
663 MATH_ERROR_MSG("FitResult::GetConfidenceIntervals","Cannot compute Confidence Intervals without the fit bin data");
664 }
665 return result;
666}
667
668// const BinData * GetFitBinData() const {
669// // return a pointer to the binned data used in the fit
670// // works only for chi2 or binned likelihood fits
671// // thus when the objective function stored is a Chi2Func or a PoissonLikelihood
672// ROOT::Math::IMultiGenFunction * f = fObjFunc->get();
673// Chi2Function * chi2func = dynamic_cast<Chi2Function*>(f);
674// if (chi2func) return &(chi2func->Data());
675// PoissonLLFunction * pllfunc = dynamic_cast<PoissonLLFunction*>(f);
676// if (pllfunc) return &(pllfunc->Data());
677// Chi2GradFunction * chi2gradfunc = dynamic_cast<Chi2GradFunction*>(f);
678// if (chi2gradfunc) return &(chi2gradfunc->Data());
679// PoissonLLGradFunction * pllgradfunc = dynamic_cast<PoissonLLFunction*>(f);
680// if (pllgradfunc) return &(pllgradfunc->Data());
681// MATH_WARN_MSG("FitResult::GetFitBinData","Cannot retrun fit bin data set if objective function is not of a known type");
682// return nullptr;
683// }
684
686 return dynamic_cast<const BinData*> ( fFitData.get() );
687}
688
689////////////////////////////////////////////////////////////////////////////////
690/// Scan parameter ipar between value of xmin and xmax
691/// A array for x and y points should be provided
692
693bool FitResult::Scan(unsigned int ipar, unsigned int &npoints, double *pntsx, double *pntsy, double xmin, double xmax)
694{
695 if (!pntsx || !pntsy || !npoints)
696 return false;
697
698 if (!fMinimizer) {
699 MATH_ERROR_MSG("FitResult::Scan", "Minimizer is not available - cannot Scan");
700 return false;
701 }
702
703 return fMinimizer->Scan(ipar, npoints, pntsx, pntsy, xmin, xmax);
704}
705
706////////////////////////////////////////////////////////////////////////////////
707/// Create a 2D contour around the minimum for the parameter ipar and jpar
708/// if a minimum does not exist or is invalid it will return false
709/// A array for x and y points should be provided
710/// Pass optionally the confidence level, default is 0.683
711/// it is assumed that ErrorDef() defines the right error definition
712/// (i.e 1 sigma error for one parameter). If not the confidence level are scaled to new level
713
714bool FitResult::Contour(unsigned int ipar, unsigned int jpar, unsigned int &npoints, double *pntsx, double *pntsy, double confLevel)
715{
716 if (!pntsx || !pntsy || !npoints)
717 return false;
718
719 if (!fMinimizer) {
720 MATH_ERROR_MSG("FitResult::Contour", "Minimizer is not available - cannot produce Contour");
721 return false;
722 }
723
724 // get error level used for fitting
725 double upScale = fMinimizer->ErrorDef();
726
727 double upVal = TMath::ChisquareQuantile(confLevel, 2); // 2 is number of parameter we do the contour
728
729 // set required error definition in minimizer
730 fMinimizer->SetErrorDef(upScale * upVal);
731
732 bool ret = fMinimizer->Contour(ipar, jpar, npoints, pntsx, pntsy);
733
734 // restore the error level used for fitting
735 fMinimizer->SetErrorDef(upScale);
736
737 return ret;
738}
739
740 } // end namespace Fit
741
742} // end namespace ROOT
743
#define MATH_ERROR_MSG(loc, str)
Definition: Error.h:82
ROOT::R::TRInterface & r
Definition: Object.C:4
#define d(i)
Definition: RSha256.hxx:102
char name[80]
Definition: TGX11.cxx:109
float xmin
Definition: THbookFile.cxx:93
float xmax
Definition: THbookFile.cxx:93
double sqrt(double)
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Definition: BinData.h:53
Class describing the configuration of the fit, options and parameter settings using the ROOT::Fit::Pa...
Definition: FitConfig.h:46
const std::vector< unsigned int > & MinosParams() const
return vector of parameter indeces for which the Minos Error will be computed
Definition: FitConfig.h:215
const std::string & MinimizerAlgoType() const
return type of minimizer algorithms
Definition: FitConfig.h:193
unsigned int NPar() const
number of parameters settings
Definition: FitConfig.h:95
const std::string & MinimizerType() const
return type of minimizer package
Definition: FitConfig.h:188
const ParameterSettings & ParSettings(unsigned int i) const
get the parameter settings for the i-th parameter (const method)
Definition: FitConfig.h:75
bool MinosErrors() const
do minos errros analysis on the parameters
Definition: FitConfig.h:205
unsigned int NPoints() const
return number of fit points
Definition: FitData.h:295
unsigned int NDim() const
return coordinate data dimension
Definition: FitData.h:311
const double * Coords(unsigned int ipoint) const
return a pointer to the coordinates data for the given fit point
Definition: FitData.h:246
class containg the result of the fit and all the related information (fitted parameter values,...
Definition: FitResult.h:48
std::vector< double > fGlobalCC
Definition: FitResult.h:366
unsigned int fNFree
Definition: FitResult.h:348
std::map< unsigned int, unsigned int > fBoundParams
Definition: FitResult.h:361
const BinData * FittedBinData() const
return BinData used in the fit (return a nullptr in case a different fit is done or the data are not ...
Definition: FitResult.cxx:685
double UpperError(unsigned int i) const
upper Minos error. If Minos has not run for parameter i return the parabolic error
Definition: FitResult.cxx:396
void FillResult(const std::shared_ptr< ROOT::Math::Minimizer > &min, const FitConfig &fconfig, const std::shared_ptr< IModelFunction > &f, bool isValid, unsigned int sizeOfData=0, bool binFit=true, const ROOT::Math::IMultiGenFunction *chi2func=0, unsigned int ncalls=0)
Fill the fit result from a Minimizer instance after fitting Run also Minos if requested from the conf...
Definition: FitResult.cxx:100
FitResult & operator=(const FitResult &rhs)
Assignment operator.
Definition: FitResult.cxx:248
std::vector< double > fErrors
Definition: FitResult.h:364
std::shared_ptr< ROOT::Math::Minimizer > fMinimizer
Definition: FitResult.h:356
bool IsParameterFixed(unsigned int ipar) const
query if a parameter is fixed
Definition: FitResult.cxx:422
unsigned int fNdf
Definition: FitResult.h:349
double Error(unsigned int i) const
parameter error by index
Definition: FitResult.h:187
double CovMatrix(unsigned int i, unsigned int j) const
retrieve covariance matrix element
Definition: FitResult.h:217
void GetConfidenceIntervals(unsigned int n, unsigned int stride1, unsigned int stride2, const double *x, double *ci, double cl=0.95, bool norm=false) const
get confidence intervals for an array of n points x.
Definition: FitResult.cxx:560
bool Scan(unsigned int ipar, unsigned int &npoints, double *pntsx, double *pntsy, double xmin=0, double xmax=0)
scan likelihood value of parameter and fill the given graph.
Definition: FitResult.cxx:693
FitResult()
Default constructor for an empty (non valid) fit result.
Definition: FitResult.cxx:45
std::shared_ptr< FitData > fFitData
model function resulting from the fit.
Definition: FitResult.h:359
std::string GetParameterName(unsigned int ipar) const
get name of parameter (deprecated)
Definition: FitResult.h:329
bool ParameterBounds(unsigned int ipar, double &lower, double &upper) const
retrieve parameter bounds - return false if parameter is not bound
Definition: FitResult.cxx:426
std::vector< double > fParams
Definition: FitResult.h:363
std::vector< double > fCovMatrix
Definition: FitResult.h:365
void SetMinosError(unsigned int i, double elow, double eup)
set the Minos errors for parameter i (called by the Fitter class when running Minos)
Definition: FitResult.cxx:403
void Print(std::ostream &os, bool covmat=false) const
print the result and optionaly covariance matrix and correlations
Definition: FitResult.cxx:446
double LowerError(unsigned int i) const
lower Minos error. If Minos has not run for parameter i return the parabolic error
Definition: FitResult.cxx:389
void PrintCovMatrix(std::ostream &os) const
print error matrix and correlations
Definition: FitResult.cxx:501
unsigned int fNCalls
Definition: FitResult.h:350
bool Contour(unsigned int ipar, unsigned int jpar, unsigned int &npoints, double *pntsx, double *pntsy, double confLevel=0.683)
create contour of two parameters around the minimum pass as option confidence level: default is a val...
Definition: FitResult.cxx:714
bool HasMinosError(unsigned int i) const
query if parameter i has the Minos error
Definition: FitResult.cxx:382
std::vector< std::pair< double, double > > fParamBounds
Definition: FitResult.h:362
std::shared_ptr< IModelFunction > fFitFunc
objective function used for fitting
Definition: FitResult.h:358
std::map< unsigned int, bool > fFixedParams
data set used in the fit
Definition: FitResult.h:360
std::string fMinimType
Definition: FitResult.h:368
double Correlation(unsigned int i, unsigned int j) const
retrieve correlation elements
Definition: FitResult.h:227
bool Update(const std::shared_ptr< ROOT::Math::Minimizer > &min, bool isValid, unsigned int ncalls=0)
Update the fit result with a new minimization status To be run only if same fit is performed with sam...
Definition: FitResult.cxx:291
std::shared_ptr< ROOT::Math::IMultiGenFunction > fObjFunc
minimizer object used for fitting
Definition: FitResult.h:357
virtual ~FitResult()
Destructor.
Definition: FitResult.cxx:236
int Index(const std::string &name) const
get index for parameter name (return -1 if not found)
Definition: FitResult.cxx:408
double Prob() const
p value of the fit (chi2 probability)
Definition: FitResult.cxx:377
std::string ParName(unsigned int i) const
name of the parameter
Definition: FitResult.cxx:439
void NormalizeErrors()
normalize errors using chi2/ndf for chi2 fits
Definition: FitResult.cxx:363
bool IsParameterBound(unsigned int ipar) const
query if a parameter is bound
Definition: FitResult.cxx:418
std::vector< std::string > fParNames
Definition: FitResult.h:369
std::map< unsigned int, std::pair< double, double > > fMinosErrors
Definition: FitResult.h:367
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
bool IsFixed() const
check if is fixed
bool HasUpperLimit() const
check if parameter has upper limit
double LowerLimit() const
return lower limit value
const std::string & Name() const
return name
bool HasLowerLimit() const
check if parameter has lower limit
double Value() const
copy constructor and assignment operators (leave them to the compiler)
double StepSize() const
return step size
double UpperLimit() const
return upper limit value
bool IsBound() const
check if is bound
Documentation for the abstract class IBaseFunctionMultiDim.
Definition: IFunction.h:62
OneDimParamFunctionAdapter class to wrap a multi-dim parameteric function in one dimensional one.
User class for calculating the derivatives of a function.
double chisquared_cdf_c(double x, double r, double x0=0)
Complement of the cumulative distribution function of the distribution with degrees of freedom (upp...
double chisquared_quantile(double z, double r)
Inverse ( ) of the cumulative distribution function of the lower tail of the distribution with degr...
Double_t x[n]
Definition: legend1.C:17
const Int_t n
Definition: legend1.C:16
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
Definition: HFitImpl.cxx:134
const int gInitialResultStatus
Definition: FitResult.cxx:43
std::string ToString(const T &val)
Utility function for conversion to strings.
Definition: Util.h:49
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
static constexpr double s
Double_t ChisquareQuantile(Double_t p, Double_t ndf)
Evaluate the quantiles of the chi-squared probability distribution function.
Definition: TMath.cxx:2164
Double_t StudentQuantile(Double_t p, Double_t ndf, Bool_t lower_tail=kTRUE)
Computes quantiles of the Student's t-distribution 1st argument is the probability,...
Definition: TMath.cxx:2640
auto * l
Definition: textangle.C:4